Suppr超能文献

脉冲电磁场通过增强脊髓损伤大鼠中经典Wnt信号介导的骨形成来改善骨量、微结构和强度方面的骨骼退化。

Pulsed Electromagnetic Fields Ameliorate Skeletal Deterioration in Bone Mass, Microarchitecture, and Strength by Enhancing Canonical Wnt Signaling-Mediated Bone Formation in Rats with Spinal Cord Injury.

作者信息

Shao Xi, Yan Zedong, Wang Dan, Yang Yongqing, Ding Yuanjun, Luo Erping, Jing Da, Cai Jing

机构信息

Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.

Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, Xi'an, China.

出版信息

J Neurotrauma. 2021 Mar 15;38(6):765-776. doi: 10.1089/neu.2020.7296. Epub 2021 Jan 8.

Abstract

Spinal cord injury (SCI) leads to extensive bone loss and high incidence of low-energy fractures. Pulsed electromagnetic fields (PEMF) treatment, as a non-invasive biophysical technique, has proven to be efficient in promoting osteogenesis. The potential osteoprotective effect and mechanism of PEMF on SCI-related bone deterioration, however, remain unknown. The spinal cord of rats was transected at vertebral level T12 to induce SCI. Thirty rats were assigned to the control, SCI, and SCI+PEMF groups ( = 10). One week after surgery, the SCI+PEMF rats were subjected to PEMF (2.0 mT, 15 Hz, 2 h/day) for eight weeks. Micro-computed tomography results showed that PEMF significantly ameliorated trabecular and cortical bone microarchitecture deterioration induced by SCI. Three-point bending and nanoindentation assays revealed that PEMF significantly improved bone mechanical properties in SCI rats. Serum biomarker and bone histomorphometric analyses demonstrated that PEMF enhanced bone formation, as evidenced by significant increase in serum osteocalcin and P1NP, mineral apposition rate, and osteoblast number on bone surface. The PEMF had no impact, however, on serum bone-resorbing cytokines (TRACP 5b and CTX-1) or osteoclast number on bone surface. The PEMF also attenuated SCI-induced negative changes in osteocyte morphology and osteocyte survival. Moreover, PEMF significantly increased skeletal expression of canonical Wnt ligands (Wnt1 and Wnt10b) and stimulated their downstream p-GSK3β and β-catenin expression in SCI rats. This study demonstrates that PEMF can mitigate the detrimental consequence of SCI on bone quantity/quality, which might be associated with canonical Wnt signaling-mediated bone formation, and reveals that PEMF may be a promising biophysical approach for resisting osteopenia/osteoporosis after SCI in clinics.

摘要

脊髓损伤(SCI)会导致大量骨质流失以及低能量骨折的高发生率。脉冲电磁场(PEMF)治疗作为一种非侵入性生物物理技术,已被证明在促进骨生成方面有效。然而,PEMF对SCI相关骨质退化的潜在骨保护作用及其机制仍不清楚。将大鼠的脊髓在T12椎体水平横断以诱导SCI。30只大鼠被分为对照组、SCI组和SCI + PEMF组(每组n = 10)。术后1周,对SCI + PEMF组大鼠进行PEMF治疗(2.0 mT,15 Hz,每天2小时),持续8周。显微计算机断层扫描结果显示,PEMF显著改善了SCI诱导的小梁骨和皮质骨微结构退化。三点弯曲和纳米压痕试验表明,PEMF显著改善了SCI大鼠的骨力学性能。血清生物标志物和骨组织形态计量学分析表明,PEMF增强了骨形成,血清骨钙素和I型前胶原氨基端前肽(P1NP)显著增加、矿物质沉积率以及骨表面成骨细胞数量增加证明了这一点。然而,PEMF对血清骨吸收细胞因子(抗酒石酸酸性磷酸酶5b和I型胶原交联C端肽(CTX - 1))或骨表面破骨细胞数量没有影响。PEMF还减轻了SCI诱导的骨细胞形态和骨细胞存活的负面变化。此外,PEMF显著增加了SCI大鼠中经典Wnt配体(Wnt1和Wnt10b)的骨骼表达,并刺激了其下游的磷酸化糖原合成酶激酶3β(p - GSK3β)和β - 连环蛋白表达。本研究表明,PEMF可以减轻SCI对骨量/质量的有害影响,这可能与经典Wnt信号介导的骨形成有关,并揭示PEMF可能是临床上抵抗SCI后骨质减少/骨质疏松的一种有前景的生物物理方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验