Ipsumio B.V., High Tech Campus, 5656 AE, Eindhoven, The Netherlands.
Department of Dermatology, Başkent University Medical School, Adana Dr. Turgut Noyan Application and Research Center, Adana, Turkey.
Sci Rep. 2020 Oct 27;10(1):18314. doi: 10.1038/s41598-020-75546-z.
Tzanck smear test is a low-cost, rapid and reliable tool which can be used for the diagnosis of many erosive-vesiculobullous, tumoral and granulomatous diseases. Currently its use is limited mainly due to lack of experience in interpretation of the smears. We developed a deep learning model, TzanckNet, that can identify cells in Tzanck smear test findings. TzanckNet was trained on a retrospective development dataset of 2260 Tzanck smear images collected between December 2006 and December 2019. The finalized model was evaluated using a prospective validation dataset of 359 Tzanck smear images collected from 15 patients during January 2020. It is designed to recognize six cell types (acantholytic cells, eosinophils, hypha, multinucleated giant cells, normal keratinocytes and tadpole cells). For 359 images and 6 cell types, TzanckNet made 2154 predictions. The accuracy was 94.3% (95% CI 93.4-95.3), the sensitivity was 83.7% (95% CI 80.3-87.0) and the specificity was 97.3% (95% CI 96.5-98.1). The area under the receiver operating characteristic curve was 0.974. Our results show that TzanckNet has the potential to lower the experience barrier needed to use this test, broadening its user base, and hence improving patient well-being.
Tzanck 涂片检查是一种低成本、快速且可靠的工具,可用于诊断许多侵蚀性水疱性、肿瘤性和肉芽肿性疾病。目前,由于对涂片的解读经验不足,其应用受到限制。我们开发了一种深度学习模型 TzanckNet,可识别 Tzanck 涂片检查结果中的细胞。TzanckNet 在 2006 年 12 月至 2019 年 12 月期间收集的 2260 张 Tzanck 涂片的回顾性开发数据集上进行了训练。最终模型使用 2020 年 1 月从 15 名患者中收集的 359 张 Tzanck 涂片的前瞻性验证数据集进行了评估。它旨在识别六种细胞类型(棘层松解细胞、嗜酸性粒细胞、菌丝、多核巨细胞、正常角质形成细胞和蝌蚪细胞)。对于 359 张图像和 6 种细胞类型,TzanckNet 做出了 2154 次预测。准确率为 94.3%(95%CI 93.4-95.3),灵敏度为 83.7%(95%CI 80.3-87.0),特异性为 97.3%(95%CI 96.5-98.1)。受试者工作特征曲线下的面积为 0.974。我们的研究结果表明,TzanckNet 有可能降低使用该检测所需的经验障碍,扩大其用户基础,从而提高患者的福祉。