Suppr超能文献

经处理脑电图在临床环境中的应用。

Use of Processed Electroencephalography in the Clinical Setting.

作者信息

Mulvey David A, Klepsch Peter

机构信息

Department of Anaesthesia, University Hospitals of Derby & Burton NHS Trust, Uttoxeter Road, Derby, DE22 3NE UK.

Department of Anaesthesia, North Bristol NHS Trust, Southmead Road, Bristol, BS10 5NB UK.

出版信息

Curr Anesthesiol Rep. 2020;10(4):480-487. doi: 10.1007/s40140-020-00424-3. Epub 2020 Oct 23.

Abstract

PURPOSE OF REVIEW

Processed electroencephalography (pEEG) is widely used in clinical practice. Few clinicians utilize the full potential of these devices. This brief review will address the improvements in patient management available from the utilization of all pEEG data.

RECENT FINDINGS

Anesthesiologists easily learn to recognize raw pEEG patterns that are consistent with an appropriate level of hypnotic effect. Power distribution within the waveform can be displayed in a visual format that identifies signatures of the principal anesthetic hypnotics. Opinion on the benefit of pEEG data in the mitigation of postoperative neurological impairment remains divided.

SUMMARY

Looking beyond the index number can aid clinical decision making and improve confidence in the benefits of this monitoring modality.

摘要

综述目的

处理后的脑电图(pEEG)在临床实践中广泛应用。很少有临床医生充分利用这些设备的全部潜力。本简要综述将探讨利用所有pEEG数据在患者管理方面带来的改善。

最新发现

麻醉医生很容易学会识别与适当催眠效果水平一致的原始pEEG模式。波形内的功率分布可以以视觉形式显示,从而识别主要麻醉催眠药的特征。关于pEEG数据在减轻术后神经功能损害方面的益处,观点仍存在分歧。

总结

超越指标数字有助于临床决策,并增强对这种监测方式益处的信心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc9e/7581499/c9a39aa369a5/40140_2020_424_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验