Suppr超能文献

图形定义反应空间的综合探索。

Comprehensive exploration of graphically defined reaction spaces.

机构信息

Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47906, USA.

Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.

出版信息

Sci Data. 2023 Mar 20;10(1):145. doi: 10.1038/s41597-023-02043-z.

Abstract

Existing reaction transition state (TS) databases are comparatively small and lack chemical diversity. Here, this data gap has been addressed using the concept of a graphically-defined model reaction to comprehensively characterize a reaction space associated with C, H, O, and N containing molecules with up to 10 heavy (non-hydrogen) atoms. The resulting dataset is composed of 176,992 organic reactions possessing at least one validated TS, activation energy, heat of reaction, reactant and product geometries, frequencies, and atom-mapping. For 33,032 reactions, more than one TS was discovered by conformational sampling, allowing conformational errors in TS prediction to be assessed. Data is supplied at the GFN2-xTB and B3LYP-D3/TZVP levels of theory. A subset of reactions were recalculated at the CCSD(T)-F12/cc-pVDZ-F12 and ωB97X-D2/def2-TZVP levels to establish relative errors. The resulting collection of reactions and properties are called the Reaction Graph Depth 1 (RGD1) dataset. RGD1 represents the largest and most chemically diverse TS dataset published to date and should find immediate use in developing novel machine learning models for predicting reaction properties.

摘要

现有的反应过渡态 (TS) 数据库相对较小,缺乏化学多样性。在这里,使用图形定义模型反应的概念解决了这个数据差距,全面描述了与包含 C、H、O 和 N 的分子相关的反应空间,这些分子最多含有 10 个重(非氢)原子。由此产生的数据集由 176,992 个有机反应组成,这些反应至少有一个经过验证的 TS、活化能、反应热、反应物和产物的几何形状、频率和原子映射。对于 33,032 个反应,通过构象采样发现了多个 TS,从而可以评估 TS 预测中的构象误差。数据以 GFN2-xTB 和 B3LYP-D3/TZVP 理论水平提供。一部分反应在 CCSD(T)-F12/cc-pVDZ-F12 和 ωB97X-D2/def2-TZVP 理论水平重新计算,以确定相对误差。这些反应和性质的集合称为反应图深度 1 (RGD1) 数据集。RGD1 代表了迄今为止发布的最大、化学多样性最高的 TS 数据集,应该可以立即用于开发用于预测反应性质的新型机器学习模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef1a/10025260/dd9cfa87c083/41597_2023_2043_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验