Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK.
Department of Materials, University of Oxford, Oxford OX1 3PH, UK.
Science. 2020 Oct 30;370(6516). doi: 10.1126/science.abb5940.
Hybrid organic-inorganic perovskites have high potential as materials for solar energy applications, but their microscopic properties are still not well understood. Atomic-resolution scanning transmission electron microscopy has provided invaluable insights for many crystalline solar cell materials, and we used this method to successfully image formamidinium lead triiodide [CH(NH)PbI] thin films with a low dose of electron irradiation. Such images reveal a highly ordered atomic arrangement of sharp grain boundaries and coherent perovskite/PbI interfaces, with a striking absence of long-range disorder in the crystal. We found that beam-induced degradation of the perovskite leads to an initial loss of formamidinium [CH(NH) ] ions, leaving behind a partially unoccupied perovskite lattice, which explains the unusual regenerative properties of these materials. We further observed aligned point defects and climb-dissociated dislocations. Our findings thus provide an atomic-level understanding of technologically important lead halide perovskites.
杂化有机-无机钙钛矿在太阳能应用材料方面具有巨大潜力,但它们的微观性质仍未被充分理解。原子分辨率扫描透射电子显微镜已为许多晶体太阳能电池材料提供了宝贵的见解,我们使用该方法对低剂量电子辐照的甲脒碘化铅[CH(NH)PbI]薄膜进行了成功成像。这些图像揭示了尖锐晶界和相干钙钛矿/PbI 界面的高度有序原子排列,晶体中明显不存在长程无序。我们发现,电子束诱导的钙钛矿降解导致甲脒[CH(NH) ]离子的初始损失,留下部分未占据的钙钛矿晶格,这解释了这些材料的不寻常的再生性能。我们进一步观察到了排列整齐的点缺陷和攀移-分解位错。因此,我们的发现提供了对技术上重要的卤化铅钙钛矿的原子级理解。