Ma Qianheng, Mermelstein Robin, Hedeker Donald
Department of Public Health Sciences, University of Chicago, USA.
Institute for Health Research and Policy, University of Illinois at Chicago, USA.
Health Serv Outcomes Res Methodol. 2020 Dec;20(4):247-264. doi: 10.1007/s10742-020-00220-w. Epub 2020 Sep 23.
Ecological Momentary Assessment (EMA) studies aim to explore the interaction between subjects' psychological states and real environmental factors. During the EMA studies, participants can receive prompted assessments intensively across days and within each day, which results in three-level longitudinal data, e.g., subject-level (level-3), day-level nested in subject (level-2) and assessment-level nested in each day (level-1). Those three-level data may exhibit complex longitudinal correlation structure but ignoring or mis-specifying the within-subject correlation structure can lead to bias on the estimation of the key effects and the intraclass correlation. Given the three-level EMA data and the time stamps of the responses, we proposed a linear mixed effects model with random effects at each level. In this model, we accounted for level-2 autocorrelation and level-1 autocorrelation and showed how structural information from the three-level data improved the fit of the model. With real time stamps of the assessments, we also provided a useful extension of this proposed model to deal with the issue of irregular-spacing in EMA assessments.
生态瞬时评估(EMA)研究旨在探索受试者心理状态与实际环境因素之间的相互作用。在EMA研究期间,参与者可以在数天内以及每天内密集地接受提示评估,这会产生三级纵向数据,例如,受试者水平(第3级)、嵌套在受试者内的日水平(第2级)以及嵌套在每日内的评估水平(第1级)。这三级数据可能呈现复杂的纵向相关结构,但忽略或错误指定受试者内相关结构可能会导致关键效应估计和组内相关出现偏差。鉴于三级EMA数据和响应的时间戳,我们提出了一个在每个水平都具有随机效应的线性混合效应模型。在这个模型中,我们考虑了第2级自相关和第1级自相关,并展示了来自三级数据的结构信息如何改善模型的拟合。利用评估的实时时间戳,我们还对这个提出的模型进行了有益的扩展,以处理EMA评估中不规则间隔的问题。