Morita Junya, Miwa Kazuhisa, Maehigashi Akihiro, Terai Hitoshi, Kojima Kazuaki, Ritter Frank E
Department of Behavior Informatics, Faculty of Informatics, Shizuoka University, Hamamatsu, Japan.
Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Nagoya, Japan.
Front Psychol. 2020 Oct 2;11:2149. doi: 10.3389/fpsyg.2020.02149. eCollection 2020.
This paper presents a cognitive model that simulates an adaptation process to automation in a time-critical task. The paper uses a simple tracking task (which represents vehicle operation) to reveal how the reliance on automation changes as the success probabilities of the automatic and manual mode vary. The model was developed by using a cognitive architecture, ACT-R (Adaptive Control of Thought-Rational). We also introduce two methods of reinforcement learning: the summation of rewards over time and a gating mechanism. The model performs this task through productions that manage perception and motor control. The utility values of these productions are updated based on rewards in every perception-action cycle. A run of this model simulated the overall trends of the behavioral data such as the performance (tracking accuracy), the auto use ratio, and the number of switches between the two modes, suggesting some validity of the assumptions made in our model. This work shows how combining different paradigms of cognitive modeling can lead to practical representations and solutions to automation and trust in automation.
本文提出了一种认知模型,该模型模拟了在时间紧迫任务中对自动化的适应过程。本文使用一个简单的跟踪任务(代表车辆操作)来揭示随着自动模式和手动模式的成功概率变化,对自动化的依赖是如何改变的。该模型是通过使用一种认知架构ACT-R(思维的自适应控制-理性)开发的。我们还引入了两种强化学习方法:随时间累积奖励和一种门控机制。该模型通过管理感知和运动控制的产生式来执行此任务。这些产生式的效用值在每个感知-动作周期中根据奖励进行更新。该模型的一次运行模拟了行为数据的总体趋势,如性能(跟踪精度)、自动使用比例以及两种模式之间的切换次数,这表明我们模型中所做假设具有一定的有效性。这项工作展示了结合不同的认知建模范式如何能够产生关于自动化以及对自动化信任的实际表示和解决方案。