Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA.
Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, California, USA.
J Diabetes. 2021 Feb;13(2):143-153. doi: 10.1111/1753-0407.13093. Epub 2020 Aug 16.
BACKGROUND: The Environmental Determinants of the Diabetes in the Young (TEDDY) study has prospectively followed, from birth, children at increased genetic risk of type 1 diabetes. TEDDY has collected heterogenous data longitudinally to gain insights into the environmental and biological mechanisms driving the progression to persistent islet autoantibodies. METHODS: We developed a machine learning model to predict imminent transition to the development of persistent islet autoantibodies based on time-varying metabolomics data integrated with time-invariant risk factors (eg, gestational age). The machine learning was initiated with 221 potential features (85 genetic, 5 environmental, 131 metabolomic) and an ensemble-based feature evaluation was utilized to identify a small set of predictive features that can be interrogated to better understand the pathogenesis leading up to persistent islet autoimmunity. RESULTS: The final integrative machine learning model included 42 disparate features, returning a cross-validated receiver operating characteristic area under the curve (AUC) of 0.74 and an AUC of ~0.65 on an independent validation dataset. The model identified a principal set of 20 time-invariant markers, including 18 genetic markers (16 single nucleotide polymorphisms [SNPs] and two HLA-DR genotypes) and two demographic markers (gestational age and exposure to a prebiotic formula). Integration with the metabolome identified 22 supplemental metabolites and lipids, including adipic acid and ceramide d42:0, that predicted development of islet autoantibodies. CONCLUSIONS: The majority (86%) of metabolites that predicted development of islet autoantibodies belonged to three pathways: lipid oxidation, phospholipase A2 signaling, and pentose phosphate, suggesting that these metabolic processes may play a role in triggering islet autoimmunity.
背景:幼年起病的 1 型糖尿病环境决定因素(TEDDY)研究前瞻性地随访了具有 1 型糖尿病遗传高风险的儿童。TEDDY 收集了异质的纵向数据,以深入了解驱动持续胰岛自身抗体进展的环境和生物学机制。
方法:我们开发了一种机器学习模型,基于时变代谢组学数据和时不变风险因素(例如,胎龄)预测即将发生的持续胰岛自身抗体的转变。机器学习模型从 221 个潜在特征(85 个遗传特征、5 个环境特征、131 个代谢组学特征)开始,并采用基于集成的特征评估来识别一小部分预测特征,以便更好地了解导致持续胰岛自身免疫的发病机制。
结果:最终的综合机器学习模型包含 42 个不同的特征,在交叉验证的接收器操作特征曲线(AUC)中获得了 0.74 的值,在独立验证数据集上的 AUC 值约为 0.65。该模型确定了一组主要的 20 个时不变标记物,包括 18 个遗传标记物(16 个单核苷酸多态性[SNP]和两个 HLA-DR 基因型)和两个人口统计学标记物(胎龄和暴露于一种益生元配方)。与代谢组学的整合确定了 22 种补充代谢物和脂质,包括己二酸和神经酰胺 d42:0,这些代谢物可预测胰岛自身抗体的发展。
结论:预测胰岛自身抗体发展的代谢物中,约 86%属于三个途径:脂质氧化、磷脂酶 A2 信号转导和戊糖磷酸途径,这表明这些代谢过程可能在触发胰岛自身免疫中发挥作用。
J Clin Endocrinol Metab. 2022-7-14
Pediatr Diabetes. 2019-1-29
J Med Internet Res. 2024-1-19
Expert Opin Ther Targets. 2023
Brief Bioinform. 2023-1-19
Diabetes. 2019-11-18
Biomed Eng Comput Biol. 2019-7-15
Nat Rev Immunol. 2019-5
Med Princ Pract. 2019-1-27