文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过整合环境、遗传和代谢标志物预测胰岛自身抗体的发展。

Prediction of the development of islet autoantibodies through integration of environmental, genetic, and metabolic markers.

机构信息

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA.

Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, California, USA.

出版信息

J Diabetes. 2021 Feb;13(2):143-153. doi: 10.1111/1753-0407.13093. Epub 2020 Aug 16.


DOI:10.1111/1753-0407.13093
PMID:33124145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7818425/
Abstract

BACKGROUND: The Environmental Determinants of the Diabetes in the Young (TEDDY) study has prospectively followed, from birth, children at increased genetic risk of type 1 diabetes. TEDDY has collected heterogenous data longitudinally to gain insights into the environmental and biological mechanisms driving the progression to persistent islet autoantibodies. METHODS: We developed a machine learning model to predict imminent transition to the development of persistent islet autoantibodies based on time-varying metabolomics data integrated with time-invariant risk factors (eg, gestational age). The machine learning was initiated with 221 potential features (85 genetic, 5 environmental, 131 metabolomic) and an ensemble-based feature evaluation was utilized to identify a small set of predictive features that can be interrogated to better understand the pathogenesis leading up to persistent islet autoimmunity. RESULTS: The final integrative machine learning model included 42 disparate features, returning a cross-validated receiver operating characteristic area under the curve (AUC) of 0.74 and an AUC of ~0.65 on an independent validation dataset. The model identified a principal set of 20 time-invariant markers, including 18 genetic markers (16 single nucleotide polymorphisms [SNPs] and two HLA-DR genotypes) and two demographic markers (gestational age and exposure to a prebiotic formula). Integration with the metabolome identified 22 supplemental metabolites and lipids, including adipic acid and ceramide d42:0, that predicted development of islet autoantibodies. CONCLUSIONS: The majority (86%) of metabolites that predicted development of islet autoantibodies belonged to three pathways: lipid oxidation, phospholipase A2 signaling, and pentose phosphate, suggesting that these metabolic processes may play a role in triggering islet autoimmunity.

摘要

背景:幼年起病的 1 型糖尿病环境决定因素(TEDDY)研究前瞻性地随访了具有 1 型糖尿病遗传高风险的儿童。TEDDY 收集了异质的纵向数据,以深入了解驱动持续胰岛自身抗体进展的环境和生物学机制。

方法:我们开发了一种机器学习模型,基于时变代谢组学数据和时不变风险因素(例如,胎龄)预测即将发生的持续胰岛自身抗体的转变。机器学习模型从 221 个潜在特征(85 个遗传特征、5 个环境特征、131 个代谢组学特征)开始,并采用基于集成的特征评估来识别一小部分预测特征,以便更好地了解导致持续胰岛自身免疫的发病机制。

结果:最终的综合机器学习模型包含 42 个不同的特征,在交叉验证的接收器操作特征曲线(AUC)中获得了 0.74 的值,在独立验证数据集上的 AUC 值约为 0.65。该模型确定了一组主要的 20 个时不变标记物,包括 18 个遗传标记物(16 个单核苷酸多态性[SNP]和两个 HLA-DR 基因型)和两个人口统计学标记物(胎龄和暴露于一种益生元配方)。与代谢组学的整合确定了 22 种补充代谢物和脂质,包括己二酸和神经酰胺 d42:0,这些代谢物可预测胰岛自身抗体的发展。

结论:预测胰岛自身抗体发展的代谢物中,约 86%属于三个途径:脂质氧化、磷脂酶 A2 信号转导和戊糖磷酸途径,这表明这些代谢过程可能在触发胰岛自身免疫中发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/47cbcb81af23/JDB-13-143-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/03a54a283dbe/JDB-13-143-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/2a3a3fda066a/JDB-13-143-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/9c1f630597de/JDB-13-143-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/a7c8b6e21c10/JDB-13-143-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/130d99586cc9/JDB-13-143-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/47cbcb81af23/JDB-13-143-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/03a54a283dbe/JDB-13-143-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/2a3a3fda066a/JDB-13-143-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/9c1f630597de/JDB-13-143-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/a7c8b6e21c10/JDB-13-143-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/130d99586cc9/JDB-13-143-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71a0/7818425/47cbcb81af23/JDB-13-143-g006.jpg

相似文献

[1]
Prediction of the development of islet autoantibodies through integration of environmental, genetic, and metabolic markers.

J Diabetes. 2021-2

[2]
Progression from islet autoimmunity to clinical type 1 diabetes is influenced by genetic factors: results from the prospective TEDDY study.

J Med Genet. 2018-10-4

[3]
Association of Early Exposure of Probiotics and Islet Autoimmunity in the TEDDY Study.

JAMA Pediatr. 2016-1

[4]
A Type 1 Diabetes Genetic Risk Score Predicts Progression of Islet Autoimmunity and Development of Type 1 Diabetes in Individuals at Risk.

Diabetes Care. 2018-7-12

[5]
The environment and the origins of islet autoimmunity and Type 1 diabetes.

Diabet Med. 2013-2

[6]
Predicting Islet Cell Autoimmunity and Type 1 Diabetes: An 8-Year TEDDY Study Progress Report.

Diabetes Care. 2019-4-9

[7]
Accelerated progression from islet autoimmunity to diabetes is causing the escalating incidence of type 1 diabetes in young children.

J Autoimmun. 2011-3-3

[8]
Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children.

PLoS Med. 2018-4-3

[9]
Integration of Infant Metabolite, Genetic, and Islet Autoimmunity Signatures to Predict Type 1 Diabetes by Age 6 Years.

J Clin Endocrinol Metab. 2022-7-14

[10]
Predicting progression to type 1 diabetes from ages 3 to 6 in islet autoantibody positive TEDDY children.

Pediatr Diabetes. 2019-1-29

引用本文的文献

[1]
Transparency and Validity of Artificial Intelligence Applications in Pediatric Diabetes: A Systematic Review.

Cureus. 2025-7-30

[2]
Metabolomics and Lipidomics Studies in Pediatric Type 1 Diabetes: Biomarker Discovery for the Early Diagnosis and Prognosis.

Pediatr Diabetes. 2023-7-13

[3]
Unfolding the Mystery of Autoimmunity: The Environmental Determinants of Diabetes in the Young (TEDDY) Study.

Diabetes Care. 2025-7-1

[4]
Decrease in multiple complement proteins associated with development of islet autoimmunity and type 1 diabetes.

iScience. 2023-12-20

[5]
The Reporting Quality of Machine Learning Studies on Pediatric Diabetes Mellitus: Systematic Review.

J Med Internet Res. 2024-1-19

[6]
Systematic review of type 1 diabetes biomarkers reveals regulation in circulating proteins related to complement, lipid metabolism, and immune response.

Clin Proteomics. 2023-9-21

[7]
Fatty acid-mediated signaling as a target for developing type 1 diabetes therapies.

Expert Opin Ther Targets. 2023

[8]
Plasma protein biomarkers predict the development of persistent autoantibodies and type 1 diabetes 6 months prior to the onset of autoimmunity.

Cell Rep Med. 2023-7-18

[9]
Environmental exposures in machine learning and data mining approaches to diabetes etiology: A scoping review.

Artif Intell Med. 2023-1

[10]
Incomplete time-series gene expression in integrative study for islet autoimmunity prediction.

Brief Bioinform. 2023-1-19

本文引用的文献

[1]
Predictive Modeling of Type 1 Diabetes Stages Using Disparate Data Sources.

Diabetes. 2019-11-18

[2]
Nested case-control data analysis using weighted conditional logistic regression in The Environmental Determinants of Diabetes in the Young (TEDDY) study: A novel approach.

Diabetes Metab Res Rev. 2019-7-31

[3]
Extending Classification Algorithms to Case-Control Studies.

Biomed Eng Comput Biol. 2019-7-15

[4]
iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data.

Brief Bioinform. 2020-5-21

[5]
Common patterns of gene regulation associated with Cesarean section and the development of islet autoimmunity - indications of immune cell activation.

Sci Rep. 2019-4-18

[6]
Artificial intelligence and the analysis of multi-platform metabolomics data for the detection of intrauterine growth restriction.

PLoS One. 2019-4-18

[7]
Metabolic gatekeepers to safeguard against autoimmunity and oncogenic B cell transformation.

Nat Rev Immunol. 2019-5

[8]
Probiotics and Prebiotics for the Amelioration of Type 1 Diabetes: Present and Future Perspectives.

Microorganisms. 2019-3-2

[9]
Systematic Error Removal Using Random Forest for Normalizing Large-Scale Untargeted Lipidomics Data.

Anal Chem. 2019-2-19

[10]
Precision Diabetes Is Slowly Becoming a Reality.

Med Princ Pract. 2019-1-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索