文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自动化糖尿病视网膜病变图像评估软件的诊断准确性:IDx-DR 和 Medios 人工智能。

Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Softwares: IDx-DR and Medios Artificial Intelligence.

机构信息

Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland.

Department of AI R & D, Remidio Innovative Solutions Inc., Glen Allen, Virginia, USA.

出版信息

Ophthalmic Res. 2023;66(1):1286-1292. doi: 10.1159/000534098. Epub 2023 Sep 27.


DOI:10.1159/000534098
PMID:37757777
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10619585/
Abstract

INTRODUCTION: Numerous studies have demonstrated the use of artificial intelligence (AI) for early detection of referable diabetic retinopathy (RDR). A direct comparison of these multiple automated diabetic retinopathy (DR) image assessment softwares (ARIAs) is, however, challenging. We retrospectively compared the performance of two modern ARIAs, IDx-DR and Medios AI. METHODS: In this retrospective-comparative study, retinal images with sufficient image quality were run on both ARIAs. They were captured in 811 consecutive patients with diabetes visiting diabetic clinics in Poland. For each patient, four non-mydriatic images, 45° field of view, i.e., two sets of one optic disc and one macula-centered image using Topcon NW400 were captured. Images were manually graded for severity of DR as no DR, any DR (mild non-proliferative diabetic retinopathy [NPDR] or more severe disease), RDR (moderate NPDR or more severe disease and/or clinically significant diabetic macular edema [CSDME]), or sight-threatening DR (severe NPDR or more severe disease and/or CSDME) by certified graders. The ARIA output was compared to manual consensus image grading (reference standard). RESULTS: On 807 patients, based on consensus grading, there was no evidence of DR in 543 patients (67%). Any DR was seen in 264 (33%) patients, of which 174 (22%) were RDR and 41 (5%) were sight-threatening DR. The sensitivity of detecting RDR against reference standard grading was 95% (95% CI: 91, 98%) and the specificity was 80% (95% CI: 77, 83%) for Medios AI. They were 99% (95% CI: 96, 100%) and 68% (95% CI: 64, 72%) for IDx-DR, respectively. CONCLUSION: Both the ARIAs achieved satisfactory accuracy, with few false negatives. Although false-positive results generate additional costs and workload, missed cases raise the most concern whenever automated screening is debated.

摘要

简介:许多研究已经证明了人工智能(AI)在可治疗的糖尿病视网膜病变(RDR)早期检测中的应用。然而,直接比较这些多种自动化糖尿病视网膜病变(DR)图像评估软件(ARIAs)具有挑战性。我们回顾性比较了两种现代 ARIA,即 IDx-DR 和 Medios AI 的性能。 方法:在这项回顾性比较研究中,将足够质量的视网膜图像输入两种 ARIA 中进行检测。这些图像来自于在波兰的糖尿病诊所就诊的 811 名连续糖尿病患者。对于每个患者,使用 Topcon NW400 拍摄了 4 张非散瞳图像,45°视野,即两组各有一张视盘和一张黄斑中心图像。使用认证分级器对 DR 的严重程度进行手动分级,结果分为无 DR、任何 DR(轻度非增殖性糖尿病视网膜病变[NPDR]或更严重的疾病)、RDR(中度 NPDR 或更严重的疾病和/或有临床意义的糖尿病性黄斑水肿[CSDME])或威胁视力的 DR(严重 NPDR 或更严重的疾病和/或 CSDME)。将 ARIA 的输出与手动共识图像分级(参考标准)进行比较。 结果:在 807 名患者中,根据共识分级,543 名患者(67%)无 DR。264 名患者(33%)有任何 DR,其中 174 名(22%)为 RDR,41 名(5%)为威胁视力的 DR。Medios AI 检测 RDR 的敏感性为 95%(95%CI:91,98%),特异性为 80%(95%CI:77,83%)。IDx-DR 的敏感性为 99%(95%CI:96,100%),特异性为 68%(95%CI:64,72%)。 结论:两种 ARIA 均达到了令人满意的准确性,假阴性病例很少。虽然假阳性结果会产生额外的成本和工作量,但在讨论自动筛查时,漏诊病例最令人担忧。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f3b/10619585/46302a7d4eba/ore-2023-0066-0001-534098_F01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f3b/10619585/46302a7d4eba/ore-2023-0066-0001-534098_F01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f3b/10619585/46302a7d4eba/ore-2023-0066-0001-534098_F01.jpg

相似文献

[1]
Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Softwares: IDx-DR and Medios Artificial Intelligence.

Ophthalmic Res. 2023

[2]
Evaluation of an AI algorithm trained on an ethnically diverse dataset to screen a previously unseen population for diabetic retinopathy.

Indian J Ophthalmol. 2024-8-1

[3]
Validation of Automated Screening for Referable Diabetic Retinopathy With an Autonomous Diagnostic Artificial Intelligence System in a Spanish Population.

J Diabetes Sci Technol. 2021-5

[4]
Medios- An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy.

Indian J Ophthalmol. 2020-2

[5]
Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System.

Acta Ophthalmol. 2018-2

[6]
Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders.

Ophthalmology. 2016-12-23

[7]
Head to head comparison of diagnostic performance of three non-mydriatic cameras for diabetic retinopathy screening with artificial intelligence.

Eye (Lond). 2024-6

[8]
The Value of Automated Diabetic Retinopathy Screening with the EyeArt System: A Study of More Than 100,000 Consecutive Encounters from People with Diabetes.

Diabetes Technol Ther. 2019-8-7

[9]
Simple, Mobile-based Artificial Intelligence Algoithm in the detection of Diabetic Retinopathy (SMART) study.

BMJ Open Diabetes Res Care. 2020-1

[10]
Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera.

Ann Med. 2024-12

引用本文的文献

[1]
Performance of a New Tabletop Non-mydriatic Fundus Camera for Single-Field Diabetic Retinopathy Detection: A Pilot Study.

Cureus. 2025-7-17

[2]
Transforming Non-Digital, Clinical Workflows to Detect and Track Vision-Threatening Diabetic Retinopathy via a Digital Platform Integrating Artificial Intelligence: Implementation Research.

Ophthalmol Ther. 2025-2

[3]
Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Software: IDx-DR and RetCAD.

Ophthalmol Ther. 2025-1

[4]
Application of Artificial Intelligence in Ophthalmology: An Updated Comprehensive Review.

J Ophthalmic Vis Res. 2024-9-16

[5]
Retinal Imaging-Based Oculomics: Artificial Intelligence as a Tool in the Diagnosis of Cardiovascular and Metabolic Diseases.

Biomedicines. 2024-9-23

[6]
Autonomous artificial intelligence for diabetic eye disease increases access and health equity in underserved populations.

NPJ Digit Med. 2024-7-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索