Wadsworth Center, New York State Department of Health, Albany, United States.
Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, United States.
Elife. 2020 Oct 30;9:e58182. doi: 10.7554/eLife.58182.
A hallmark of CRISPR-Cas immunity systems is the CRISPR array, a genomic locus consisting of short, repeated sequences ('repeats') interspersed with short, variable sequences ('spacers'). CRISPR arrays are transcribed and processed into individual CRISPR RNAs that each include a single spacer, and direct Cas proteins to complementary sequences in invading nucleic acid. Most bacterial CRISPR array transcripts are unusually long for untranslated RNA, suggesting the existence of mechanisms to prevent premature transcription termination by Rho, a conserved bacterial transcription termination factor that rapidly terminates untranslated RNA. We show that Rho can prematurely terminate transcription of bacterial CRISPR arrays, and we identify a widespread antitermination mechanism that antagonizes Rho to facilitate complete transcription of CRISPR arrays. Thus, our data highlight the importance of transcription termination and antitermination in the evolution of bacterial CRISPR-Cas systems.
CRISPR-Cas 免疫系统的一个标志是 CRISPR 数组,这是一个由短的、重复的序列(“重复”)组成的基因组位置,散布着短的、可变的序列(“间隔”)。CRISPR 数组被转录并加工成单个 CRISPR RNA,每个 RNA 都包含一个单一的间隔,并且指导 Cas 蛋白与入侵核酸中的互补序列结合。大多数细菌的 CRISPR 数组转录物对于非翻译 RNA 来说异常长,这表明存在防止 Rho 过早转录终止的机制,Rho 是一种保守的细菌转录终止因子,它会迅速终止非翻译 RNA。我们表明,Rho 可以使细菌 CRISPR 数组的转录过早终止,并且我们确定了一种广泛存在的抗终止机制,该机制拮抗 Rho 以促进 CRISPR 数组的完全转录。因此,我们的数据强调了转录终止和抗终止在细菌 CRISPR-Cas 系统进化中的重要性。