Suppr超能文献

弗朗西斯菌 novicida Cas12a 对 CRISPR 数组下游末端重复结构敏感。

The Francisella novicida Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays.

机构信息

a Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , NC USA.

b Helmholtz Institute for RNA-based Infection Research , Würzburg , Germany.

出版信息

RNA Biol. 2019 Apr;16(4):404-412. doi: 10.1080/15476286.2018.1526537. Epub 2018 Oct 12.

Abstract

The Class 2 Type V-A CRISPR effector protein Cas12a/Cpf1 has gained widespread attention in part because of the ease in achieving multiplexed genome editing, gene regulation, and DNA detection. Multiplexing derives from the ability of Cas12a alone to generate multiple guide RNAs from a transcribed CRISPR array encoding alternating conserved repeats and targeting spacers. While array design has focused on how to optimize guide-RNA sequences, little attention has been paid to sequences outside of the CRISPR array. Here, we show that a structured hairpin located immediately downstream of the 3' repeat interferes with utilization of the adjacent encoded guide RNA by Francisella novicida (Fn)Cas12a. We first observed that a synthetic Rho-independent terminator immediately downstream of an array impaired DNA cleavage based on plasmid clearance in E. coli and DNA cleavage in a cell-free transcription-translation (TXTL) system. TXTL-based cleavage assays further revealed that inhibition was associated with incomplete processing of the transcribed CRISPR array and could be attributed to the stable hairpin formed by the terminator. We also found that the inhibitory effect partially extended to upstream spacers in a multi-spacer array. Finally, we found that removing the terminal repeat from the array increased the inhibitory effect, while replacing this repeat with an unprocessable terminal repeat from a native FnCas12a array restored cleavage activity directed by the adjacent encoded guide RNA. Our study thus revealed that sequences surrounding a CRISPR array can interfere with the function of a CRISPR nuclease, with implications for the design and evolution of CRISPR arrays.

摘要

2 型 V-A CRISPR 效应蛋白 Cas12a/Cpf1 因其易于实现多重基因组编辑、基因调控和 DNA 检测而受到广泛关注。多重性源于 Cas12a 能够从转录的 CRISPR 阵列中生成多个向导 RNA,该阵列编码交替的保守重复序列和靶向间隔序列。虽然阵列设计侧重于如何优化向导 RNA 序列,但很少关注 CRISPR 阵列之外的序列。在这里,我们表明位于 3'重复序列下游的结构发夹会干扰弗朗西斯氏菌 novicida (Fn)Cas12a 对相邻编码向导 RNA 的利用。我们首先观察到,阵列下游的合成 Rho 非依赖性终止子会损害大肠杆菌中的质粒清除和无细胞转录-翻译 (TXTL) 系统中的 DNA 切割。基于 TXTL 的切割分析进一步表明,抑制与转录 CRISPR 阵列的不完全加工有关,并且可以归因于终止子形成的稳定发夹。我们还发现,抑制效应部分扩展到多间隔阵列中的上游间隔序列。最后,我们发现从阵列中去除末端重复序列会增加抑制效应,而用来自天然 FnCas12a 阵列的不可加工的末端重复序列替换该重复序列会恢复相邻编码向导 RNA 指导的切割活性。因此,我们的研究表明,CRISPR 阵列周围的序列会干扰 CRISPR 核酸酶的功能,这对 CRISPR 阵列的设计和进化具有重要意义。

相似文献

1
The Francisella novicida Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays.
RNA Biol. 2019 Apr;16(4):404-412. doi: 10.1080/15476286.2018.1526537. Epub 2018 Oct 12.
2
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.
3
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016.
4
Mechanistic Insights into the cis- and trans-Acting DNase Activities of Cas12a.
Mol Cell. 2019 Feb 7;73(3):589-600.e4. doi: 10.1016/j.molcel.2018.11.021. Epub 2019 Jan 10.
6
CRATES: A one-step assembly method for Class 2 CRISPR arrays.
Methods Enzymol. 2019;629:493-511. doi: 10.1016/bs.mie.2019.04.011. Epub 2019 Aug 5.
7
Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5444-5449. doi: 10.1073/pnas.1718686115. Epub 2018 May 7.
8
Improving FnCas12a Genome Editing by Exonuclease Fusion.
CRISPR J. 2020 Dec;3(6):503-511. doi: 10.1089/crispr.2020.0073.
9
Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
Mol Cell. 2017 Aug 17;67(4):633-645.e3. doi: 10.1016/j.molcel.2017.06.035. Epub 2017 Aug 3.
10
CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects.
J Biol Chem. 2020 Apr 24;295(17):5538-5553. doi: 10.1074/jbc.RA120.012933. Epub 2020 Mar 11.

引用本文的文献

1
Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine.
Front Genome Ed. 2024 Dec 12;6:1509924. doi: 10.3389/fgeed.2024.1509924. eCollection 2024.
3
Tuning of Gene Expression in Using Synthetic Promoters and CRISPRi.
ACS Synth Biol. 2022 Dec 16;11(12):4077-4088. doi: 10.1021/acssynbio.2c00385. Epub 2022 Nov 25.
4
A TXTL-Based Assay to Rapidly Identify PAMs for CRISPR-Cas Systems with Multi-Protein Effector Complexes.
Methods Mol Biol. 2022;2433:391-411. doi: 10.1007/978-1-0716-1998-8_24.
5
Enhanced Cas12a multi-gene regulation using a CRISPR array separator.
Elife. 2021 Sep 9;10:e66406. doi: 10.7554/eLife.66406.
6
gEL DNA: A Cloning- and Polymerase Chain Reaction-Free Method for CRISPR-Based Multiplexed Genome Editing.
CRISPR J. 2021 Dec;4(6):896-913. doi: 10.1089/crispr.2020.0028. Epub 2021 Apr 23.
7
crRNA complementarity shifts endogenous CRISPR-Cas systems between transcriptional repression and DNA defense.
RNA Biol. 2021 Nov;18(11):1560-1573. doi: 10.1080/15476286.2021.1878335. Epub 2021 Mar 18.
8
Sequence-independent RNA sensing and DNA targeting by a split domain CRISPR-Cas12a gRNA switch.
Nucleic Acids Res. 2021 Mar 18;49(5):2985-2999. doi: 10.1093/nar/gkab100.

本文引用的文献

1
CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity.
Bioinformatics. 2019 Aug 15;35(16):2783-2789. doi: 10.1093/bioinformatics/bty1061.
2
Base editing with a Cpf1-cytidine deaminase fusion.
Nat Biotechnol. 2018 Apr;36(4):324-327. doi: 10.1038/nbt.4102. Epub 2018 Mar 19.
3
Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6.
Science. 2018 Apr 27;360(6387):439-444. doi: 10.1126/science.aaq0179. Epub 2018 Feb 15.
5
FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
Nucleic Acids Res. 2017 Dec 1;45(21):12585-12598. doi: 10.1093/nar/gkx1007.
6
Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors.
Nat Methods. 2017 Dec;14(12):1163-1166. doi: 10.1038/nmeth.4483. Epub 2017 Oct 30.
7
The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.
Mol Cell. 2017 Oct 5;68(1):15-25. doi: 10.1016/j.molcel.2017.09.007.
8
A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.
Nucleic Acids Res. 2017 Nov 2;45(19):11295-11304. doi: 10.1093/nar/gkx783.
9
Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells.
Nat Chem Biol. 2017 Aug;13(8):839-841. doi: 10.1038/nchembio.2410. Epub 2017 Jun 19.
10
CRISPR-Cpf1: A New Tool for Plant Genome Editing.
Trends Plant Sci. 2017 Jul;22(7):550-553. doi: 10.1016/j.tplants.2017.05.001. Epub 2017 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验