Suppr超能文献

微生物生物膜作为活体光导体,由于细胞色素 OmcS 纳米线中的超快电子转移。

Microbial biofilms as living photoconductors due to ultrafast electron transfer in cytochrome OmcS nanowires.

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.

Microbial Sciences Institute, Yale University, West Haven, CT, USA.

出版信息

Nat Commun. 2022 Sep 7;13(1):5150. doi: 10.1038/s41467-022-32659-5.

Abstract

Light-induced microbial electron transfer has potential for efficient production of value-added chemicals, biofuels and biodegradable materials owing to diversified metabolic pathways. However, most microbes lack photoactive proteins and require synthetic photosensitizers that suffer from photocorrosion, photodegradation, cytotoxicity, and generation of photoexcited radicals that are harmful to cells, thus severely limiting the catalytic performance. Therefore, there is a pressing need for biocompatible photoconductive materials for efficient electronic interface between microbes and electrodes. Here we show that living biofilms of Geobacter sulfurreducens use nanowires of cytochrome OmcS as intrinsic photoconductors. Photoconductive atomic force microscopy shows up to 100-fold increase in photocurrent in purified individual nanowires. Photocurrents respond rapidly (<100 ms) to the excitation and persist reversibly for hours. Femtosecond transient absorption spectroscopy and quantum dynamics simulations reveal ultrafast (~200 fs) electron transfer between nanowire hemes upon photoexcitation, enhancing carrier density and mobility. Our work reveals a new class of natural photoconductors for whole-cell catalysis.

摘要

由于具有多样化的代谢途径,光诱导微生物电子转移在高效生产增值化学品、生物燃料和可生物降解材料方面具有潜力。然而,大多数微生物缺乏光活性蛋白,需要合成的光敏剂,这些光敏剂会遭受光腐蚀、光降解、细胞毒性以及产生对细胞有害的光激发自由基,从而严重限制了其催化性能。因此,迫切需要具有生物相容性的光电导材料,以实现微生物与电极之间的高效电子界面。在这里,我们展示了能够利用细胞色素 OmcS 纳米线作为固有光电导材料的生活硫还原地杆菌生物膜。光电导原子力显微镜显示,在纯化的单个纳米线中,光电流增加了 100 倍。光电流对激发的响应迅速(<100ms),并可持续数小时可逆。飞秒瞬态吸收光谱和量子动力学模拟揭示了光激发后纳米线血卟啉之间超快(~200fs)的电子转移,从而提高了载流子密度和迁移率。我们的工作揭示了一类用于全细胞催化的新型天然光电导材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8c/9452534/8b8f7f001a2d/41467_2022_32659_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验