Suppr超能文献

LAMP:基于人类基因网络中模块和途径的分层评估得到的疾病分类。

LAMP: disease classification derived from layered assessment on modules and pathways in the human gene network.

机构信息

Beijing Advanced Innovation Center for Big Data and Brain Computing and LMIB, Beihang University, Beijing, China.

Peng Cheng Laboratory, Shenzhen, Guangdong Province, China.

出版信息

BMC Bioinformatics. 2020 Oct 30;21(1):487. doi: 10.1186/s12859-020-03800-2.

Abstract

BACKGROUND

Classification of diseases based on genetic information is of great significance as the basis for precision medicine, increasing the understanding of disease etiology and revolutionizing personalized medicine. Much effort has been directed at understanding disease associations by constructing disease networks, and classifying patient samples according to gene expression data. Integrating human gene networks overcomes limited coverage of genes. Incorporating pathway information into disease classification procedure addresses the challenge of cellular heterogeneity across patients.

RESULTS

In this work, we propose a disease classification model LAMP, which concentrates on the layered assessment on modules and pathways. Directed human gene interactions are the foundation of constructing the human gene network, where the significant roles of disease and pathway genes are recognized. The fast unfolding algorithm identifies 11 modules in the largest connected component. Then layered networks are introduced to distinguish positions of genes in propagating information from sources to targets. After gene screening, hierarchical clustering and refined process, 1726 diseases from KEGG are classified into 18 categories. Also, it is expounded that diseases with overlapping genes may not belong to the same category in LAMP. Within each category, entropy is applied to measure the compositional complexity, and to evaluate the prospects for combination diagnosis and gene-targeted therapy for diseases.

CONCLUSION

In this work, by collecting data from BioGRID and KEGG, we develop a disease classification model LAMP, to support people to view diseases from the perspective of commonalities in etiology and pathology. Comprehensive research on existing diseases can help meet the challenges of unknown diseases. The results provide suggestions for combination diagnosis and gene-targeted therapy, which motivates clinicians and researchers to reposition the understanding of diseases and explore diagnosis and therapy strategies.

摘要

背景

基于遗传信息的疾病分类对于精准医学具有重要意义,它增加了对疾病病因的理解并彻底改变了个性化医疗。通过构建疾病网络以及根据基因表达数据对患者样本进行分类,人们已经在理解疾病相关性方面付出了巨大努力。整合人类基因网络克服了基因覆盖范围有限的问题。将途径信息纳入疾病分类过程中解决了患者间细胞异质性的挑战。

结果

在这项工作中,我们提出了一种疾病分类模型 LAMP,它专注于模块和途径的分层评估。有向人类基因相互作用是构建人类基因网络的基础,其中识别出疾病和途径基因的重要作用。快速展开算法确定了最大连通分量中的 11 个模块。然后引入分层网络来区分基因在从源到目标传播信息中的位置。经过基因筛选、层次聚类和细化过程,KEGG 中的 1726 种疾病被分为 18 类。此外,还阐述了 LAMP 中具有重叠基因的疾病可能不属于同一类别。在每个类别中,熵用于衡量组成复杂性,并评估疾病的联合诊断和基因靶向治疗的前景。

结论

在这项工作中,我们通过从 BioGRID 和 KEGG 收集数据,开发了一种疾病分类模型 LAMP,以支持人们从病因和病理学的共性角度看待疾病。对现有疾病的综合研究有助于应对未知疾病的挑战。结果为联合诊断和基因靶向治疗提供了建议,这激发了临床医生和研究人员重新定位对疾病的理解,并探索诊断和治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c784/7597061/441ca73af5cb/12859_2020_3800_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验