Suppr超能文献

生物医学大数据时代的网络医学

Network Medicine in the Age of Biomedical Big Data.

作者信息

Sonawane Abhijeet R, Weiss Scott T, Glass Kimberly, Sharma Amitabh

机构信息

Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States.

Department of Medicine, Harvard Medical School, Boston, MA, United States.

出版信息

Front Genet. 2019 Apr 11;10:294. doi: 10.3389/fgene.2019.00294. eCollection 2019.

Abstract

Network medicine is an emerging area of research dealing with molecular and genetic interactions, network biomarkers of disease, and therapeutic target discovery. Large-scale biomedical data generation offers a unique opportunity to assess the effect and impact of cellular heterogeneity and environmental perturbations on the observed phenotype. Marrying the two, network medicine with biomedical data provides a framework to build meaningful models and extract impactful results at a network level. In this review, we survey existing network types and biomedical data sources. More importantly, we delve into ways in which the network medicine approach, aided by phenotype-specific biomedical data, can be gainfully applied. We provide three paradigms, mainly dealing with three major biological network archetypes: protein-protein interaction, expression-based, and gene regulatory networks. For each of these paradigms, we discuss a broad overview of philosophies under which various network methods work. We also provide a few examples in each paradigm as a test case of its successful application. Finally, we delineate several opportunities and challenges in the field of network medicine. We hope this review provides a lexicon for researchers from biological sciences and network theory to come on the same page to work on research areas that require interdisciplinary expertise. Taken together, the understanding gained from combining biomedical data with networks can be useful for characterizing disease etiologies and identifying therapeutic targets, which, in turn, will lead to better preventive medicine with translational impact on personalized healthcare.

摘要

网络医学是一个新兴的研究领域,涉及分子和基因相互作用、疾病的网络生物标志物以及治疗靶点的发现。大规模生物医学数据的生成提供了一个独特的机会,来评估细胞异质性和环境扰动对所观察到的表型的影响。将这两者结合起来,网络医学与生物医学数据提供了一个框架,以在网络层面构建有意义的模型并提取有影响力的结果。在本综述中,我们调查了现有的网络类型和生物医学数据源。更重要的是,我们深入探讨了借助特定表型的生物医学数据,网络医学方法能够得到有效应用的方式。我们提供了三种范式,主要涉及三种主要的生物网络原型:蛋白质-蛋白质相互作用、基于表达的网络和基因调控网络。对于这些范式中的每一种,我们讨论了各种网络方法所依据的基本理念的大致情况。我们还在每种范式中提供了一些例子,作为其成功应用的测试案例。最后,我们阐述了网络医学领域的几个机遇和挑战。我们希望本综述为生物科学和网络理论领域的研究人员提供一个词汇表,使他们能够达成共识,致力于需要跨学科专业知识的研究领域。综上所述,将生物医学数据与网络相结合所获得的认识,对于表征疾病病因和识别治疗靶点可能是有用的,这反过来又将带来更好的预防医学,并对个性化医疗产生转化影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b4b/6470635/9e1822ebbec9/fgene-10-00294-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验