Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea.
Core Protein Resources Center, DGIST, Daegu, 42988, Korea.
Mol Autism. 2020 Oct 30;11(1):87. doi: 10.1186/s13229-020-00392-9.
Recent progress in genomics has contributed to the identification of a large number of autism spectrum disorder (ASD) risk genes, many of which encode synaptic proteins. Our understanding of ASDs has advanced rapidly, partly owing to the development of numerous animal models. Extensive characterizations using a variety of behavioral batteries that analyze social behaviors have shown that a subset of engineered mice that model mutations in genes encoding Shanks, a family of excitatory postsynaptic scaffolding proteins, exhibit autism-like behaviors. Although these behavioral assays have been useful in identifying deficits in simple social behaviors, alterations in complex social behaviors remain largely untested.
Two syndromic ASD mouse models-Shank2 constitutive knockout [KO] mice and Shank3 constitutive KO mice-were examined for alterations in social dominance and social cooperative behaviors using tube tests and automated cooperation tests. Upon naïve and salient behavioral experience, expression levels of c-Fos were analyzed as a proxy for neural activity across diverse brain areas, including the medial prefrontal cortex (mPFC) and a number of subcortical structures.
As previously reported, Shank2 KO mice showed deficits in sociability, with intact social recognition memory, whereas Shank3 KO mice displayed no overt phenotypes. Strikingly, the two Shank KO mouse models exhibited diametrically opposed alterations in social dominance and cooperative behaviors. After a specific social behavioral experience, Shank mutant mice exhibited distinct changes in number of c-Fos neurons in the number of cortical and subcortical brain regions.
Our results underscore the heterogeneity of social behavioral alterations in different ASD mouse models and highlight the utility of testing complex social behaviors in validating neurodevelopmental and neuropsychiatric disorder models. In addition, neural activities at distinct brain regions are likely collectively involved in eliciting complex social behaviors, which are differentially altered in ASD mouse models.
基因组学的最新进展有助于确定大量自闭症谱系障碍 (ASD) 风险基因,其中许多基因编码突触蛋白。我们对 ASDs 的认识迅速提高,部分原因是开发了许多动物模型。使用各种分析社会行为的行为电池进行广泛的特征描述表明,模拟编码 Shanks 的基因突变的工程小鼠亚类表现出类似自闭症的行为。尽管这些行为测定法在识别简单社会行为缺陷方面非常有用,但复杂社会行为的改变在很大程度上仍未得到检验。
使用管测试和自动化合作测试,检查了两种综合征 ASD 小鼠模型-Shank2 组成型敲除 [KO] 小鼠和 Shank3 组成型 KO 小鼠-在社会统治和社会合作行为中的变化。在幼稚和显著的行为体验后,分析 c-Fos 的表达水平作为跨多个大脑区域(包括内侧前额叶皮层 (mPFC) 和许多皮质下结构)的神经活动的替代物。
正如之前报道的那样,Shank2 KO 小鼠表现出社交能力缺陷,具有完整的社交识别记忆,而 Shank3 KO 小鼠则没有明显的表型。引人注目的是,两种 Shank KO 小鼠模型表现出相反的社会统治和合作行为改变。在特定的社会行为体验后,Shank 突变小鼠在皮质和皮质下脑区的 c-Fos 神经元数量上表现出不同的变化。
我们的结果强调了不同 ASD 小鼠模型中社交行为改变的异质性,并强调了测试复杂社交行为在验证神经发育和神经精神障碍模型中的效用。此外,不同脑区的神经活动可能共同参与引发复杂的社会行为,而 ASD 小鼠模型中的这些行为则发生了不同的改变。