Suppr超能文献

基于卷积神经网络的原发性前列腺癌 PSMA PET 图像前列腺内肿瘤分割。

Intraprostatic Tumor Segmentation on PSMA PET Images in Patients with Primary Prostate Cancer with a Convolutional Neural Network.

机构信息

Division of Medical Physics, Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Faculty of Engineering, University of Freiburg, Freiburg, Germany.

出版信息

J Nucl Med. 2021 Jun 1;62(6):823-828. doi: 10.2967/jnumed.120.254623. Epub 2020 Oct 30.

Abstract

Accurate delineation of the intraprostatic gross tumor volume (GTV) is a prerequisite for treatment approaches in patients with primary prostate cancer (PCa). Prostate-specific membrane antigen PET (PSMA PET) may outperform MRI in GTV detection. However, visual GTV delineation underlies interobserver heterogeneity and is time consuming. The aim of this study was to develop a convolutional neural network (CNN) for automated segmentation of intraprostatic tumor (GTV-CNN) in PSMA PET. The CNN (3D U-Net) was trained on the Ga-PSMA PET images of 152 patients from 2 different institutions, and the training labels were generated manually using a validated technique. The CNN was tested on 2 independent internal (cohort 1: Ga-PSMA PET, = 18 and cohort 2: F-PSMA PET, = 19) and 1 external (cohort 3: Ga-PSMA PET, = 20) test datasets. Accordance between manual contours and GTV-CNN was assessed with the Dice-Sørensen coefficient (DSC). Sensitivity and specificity were calculated for the 2 internal test datasets (cohort 1: = 18, cohort 2: = 11) using whole-mount histology. The median DSCs for cohorts 1-3 were 0.84 (range: 0.32-0.95), 0.81 (range: 0.28-0.93), and 0.83 (range: 0.32-0.93), respectively. Sensitivities and specificities for the GTV-CNN were comparable with manual expert contours: 0.98 and 0.76 (cohort 1) and 1 and 0.57 (cohort 2), respectively. Computation time was around 6 s for a standard dataset. The application of a CNN for automated contouring of intraprostatic GTV in Ga-PSMA and F-PSMA PET images resulted in a high concordance with expert contours and in high sensitivities and specificities in comparison with histology as a reference. This robust, accurate and fast technique may be implemented for treatment concepts in primary prostate cancer. The trained model and the study's source code are available in an open source repository.

摘要

前列腺内大体肿瘤体积(GTV)的准确勾画是原发性前列腺癌(PCa)患者治疗方法的前提。前列腺特异性膜抗原 PET(PSMA PET)在 GTV 检测方面可能优于 MRI。然而,基于视觉的 GTV 勾画存在观察者间的异质性,且耗时较长。本研究旨在开发一种用于 PSMA PET 中前列腺内肿瘤自动勾画的卷积神经网络(CNN)(GTV-CNN)。该 CNN(3D U-Net)在来自 2 个不同机构的 152 名患者的 Ga-PSMA PET 图像上进行了训练,训练标签使用经过验证的技术手动生成。该 CNN 在 2 个独立的内部(队列 1:Ga-PSMA PET,n=18;队列 2:F-PSMA PET,n=19)和 1 个外部(队列 3:Ga-PSMA PET,n=20)测试数据集上进行了测试。手动轮廓与 GTV-CNN 的一致性采用 Dice-Sørensen 系数(DSC)进行评估。使用全组织切片分别对 2 个内部测试数据集(队列 1:n=18;队列 2:n=11)计算了敏感性和特异性。队列 1-3 的中位数 DSCs 分别为 0.84(范围:0.32-0.95)、0.81(范围:0.28-0.93)和 0.83(范围:0.32-0.93)。GTV-CNN 的敏感性和特异性与手动专家轮廓相当:0.98 和 0.76(队列 1)和 1 和 0.57(队列 2)。对于标准数据集,计算时间约为 6 秒。在 Ga-PSMA 和 F-PSMA PET 图像中,使用 CNN 进行前列腺内 GTV 的自动勾画与专家轮廓高度一致,与组织学作为参考相比,具有较高的敏感性和特异性。这种强大、准确和快速的技术可能适用于原发性前列腺癌的治疗方案。经过训练的模型和研究的源代码可在一个开源存储库中获得。

相似文献

引用本文的文献

5
Update on PSMA-based Prostate Cancer Imaging.PSMA 靶向前列腺癌成像的最新进展。
Semin Nucl Med. 2024 Nov;54(6):941-950. doi: 10.1053/j.semnuclmed.2024.10.004. Epub 2024 Oct 28.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验