Arribas Julia, Antonelli Giulio, Frazzoni Leonardo, Fuccio Lorenzo, Ebigbo Alanna, van der Sommen Fons, Ghatwary Noha, Palm Christoph, Coimbra Miguel, Renna Francesco, Bergman J J G H M, Sharma Prateek, Messmann Helmut, Hassan Cesare, Dinis-Ribeiro Mario J
CIDES/CINTESIS, Faculty of Medicine, University of Porto, Porto, Portugal.
Digestive Endoscopy Unit, Nuovo Regina Margherita Hospital, Rome, Italy.
Gut. 2020 Oct 30. doi: 10.1136/gutjnl-2020-321922.
OBJECTIVE: Artificial intelligence (AI) may reduce underdiagnosed or overlooked upper GI (UGI) neoplastic and preneoplastic conditions, due to subtle appearance and low disease prevalence. Only disease-specific AI performances have been reported, generating uncertainty on its clinical value. DESIGN: We searched PubMed, Embase and Scopus until July 2020, for studies on the diagnostic performance of AI in detection and characterisation of UGI lesions. Primary outcomes were pooled diagnostic accuracy, sensitivity and specificity of AI. Secondary outcomes were pooled positive (PPV) and negative (NPV) predictive values. We calculated pooled proportion rates (%), designed summary receiving operating characteristic curves with respective area under the curves (AUCs) and performed metaregression and sensitivity analysis. RESULTS: Overall, 19 studies on detection of oesophageal squamous cell neoplasia (ESCN) or Barrett's esophagus-related neoplasia (BERN) or gastric adenocarcinoma (GCA) were included with 218, 445, 453 patients and 7976, 2340, 13 562 images, respectively. AI-sensitivity/specificity/PPV/NPV/positive likelihood ratio/negative likelihood ratio for UGI neoplasia detection were 90% (CI 85% to 94%)/89% (CI 85% to 92%)/87% (CI 83% to 91%)/91% (CI 87% to 94%)/8.2 (CI 5.7 to 11.7)/0.111 (CI 0.071 to 0.175), respectively, with an overall AUC of 0.95 (CI 0.93 to 0.97). No difference in AI performance across ESCN, BERN and GCA was found, AUC being 0.94 (CI 0.52 to 0.99), 0.96 (CI 0.95 to 0.98), 0.93 (CI 0.83 to 0.99), respectively. Overall, study quality was low, with high risk of selection bias. No significant publication bias was found. CONCLUSION: We found a high overall AI accuracy for the diagnosis of any neoplastic lesion of the UGI tract that was independent of the underlying condition. This may be expected to substantially reduce the miss rate of precancerous lesions and early cancer when implemented in clinical practice.
目的:由于上消化道(UGI)肿瘤性和癌前病变外观细微且疾病患病率低,人工智能(AI)可能会减少漏诊或被忽视的情况。目前仅报道了针对特定疾病的AI性能,这使其临床价值存在不确定性。 设计:我们检索了截至2020年7月的PubMed、Embase和Scopus数据库,以查找关于AI在上消化道病变检测和特征描述中的诊断性能的研究。主要结局指标为AI的综合诊断准确性、敏感性和特异性。次要结局指标为综合阳性预测值(PPV)和阴性预测值(NPV)。我们计算了综合比例率(%),设计了带有各自曲线下面积(AUC)的汇总接收操作特征曲线,并进行了Meta回归和敏感性分析。 结果:总体而言,共纳入了19项关于食管鳞状细胞肿瘤(ESCN)、巴雷特食管相关肿瘤(BERN)或胃腺癌(GCA)检测的研究,分别涉及218、445、453例患者以及7976、2340、13562张图像。UGI肿瘤检测的AI敏感性/特异性/PPV/NPV/阳性似然比/阴性似然比分别为90%(95%CI:85%至94%)/89%(95%CI:85%至92%)/87%(95%CI:83%至91%)/91%(95%CI:87%至94%)/8.2(95%CI:5.7至11.7)/0.111(95%CI:0.071至0.175),总体AUC为0.95(95%CI:0.93至0.97)。未发现ESCN、BERN和GCA之间的AI性能存在差异,其AUC分别为0.94(95%CI:0.52至0.99)、0.96(95%CI:0.95至0.98)、0.93(95%CI:0.83至0.99)。总体而言,研究质量较低,存在较高的选择偏倚风险。未发现明显的发表偏倚。 结论:我们发现AI对上消化道任何肿瘤性病变的诊断具有较高的总体准确性,且与潜在疾病无关。在临床实践中应用时,这有望大幅降低癌前病变和早期癌症的漏诊率。
Aliment Pharmacol Ther. 2022-3
Gastroenterology. 2022-4
J Natl Cancer Cent. 2024-12-27
J Med Internet Res. 2025-4-1
Ann Med Surg (Lond). 2023-8-15
Int J Mol Sci. 2023-2-7