文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在上消化道肿瘤中的独立性能:一项荟萃分析。

Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis.

作者信息

Arribas Julia, Antonelli Giulio, Frazzoni Leonardo, Fuccio Lorenzo, Ebigbo Alanna, van der Sommen Fons, Ghatwary Noha, Palm Christoph, Coimbra Miguel, Renna Francesco, Bergman J J G H M, Sharma Prateek, Messmann Helmut, Hassan Cesare, Dinis-Ribeiro Mario J

机构信息

CIDES/CINTESIS, Faculty of Medicine, University of Porto, Porto, Portugal.

Digestive Endoscopy Unit, Nuovo Regina Margherita Hospital, Rome, Italy.

出版信息

Gut. 2020 Oct 30. doi: 10.1136/gutjnl-2020-321922.


DOI:10.1136/gutjnl-2020-321922
PMID:33127833
Abstract

OBJECTIVE: Artificial intelligence (AI) may reduce underdiagnosed or overlooked upper GI (UGI) neoplastic and preneoplastic conditions, due to subtle appearance and low disease prevalence. Only disease-specific AI performances have been reported, generating uncertainty on its clinical value. DESIGN: We searched PubMed, Embase and Scopus until July 2020, for studies on the diagnostic performance of AI in detection and characterisation of UGI lesions. Primary outcomes were pooled diagnostic accuracy, sensitivity and specificity of AI. Secondary outcomes were pooled positive (PPV) and negative (NPV) predictive values. We calculated pooled proportion rates (%), designed summary receiving operating characteristic curves with respective area under the curves (AUCs) and performed metaregression and sensitivity analysis. RESULTS: Overall, 19 studies on detection of oesophageal squamous cell neoplasia (ESCN) or Barrett's esophagus-related neoplasia (BERN) or gastric adenocarcinoma (GCA) were included with 218, 445, 453 patients and 7976, 2340, 13 562 images, respectively. AI-sensitivity/specificity/PPV/NPV/positive likelihood ratio/negative likelihood ratio for UGI neoplasia detection were 90% (CI 85% to 94%)/89% (CI 85% to 92%)/87% (CI 83% to 91%)/91% (CI 87% to 94%)/8.2 (CI 5.7 to 11.7)/0.111 (CI 0.071 to 0.175), respectively, with an overall AUC of 0.95 (CI 0.93 to 0.97). No difference in AI performance across ESCN, BERN and GCA was found, AUC being 0.94 (CI 0.52 to 0.99), 0.96 (CI 0.95 to 0.98), 0.93 (CI 0.83 to 0.99), respectively. Overall, study quality was low, with high risk of selection bias. No significant publication bias was found. CONCLUSION: We found a high overall AI accuracy for the diagnosis of any neoplastic lesion of the UGI tract that was independent of the underlying condition. This may be expected to substantially reduce the miss rate of precancerous lesions and early cancer when implemented in clinical practice.

摘要

目的:由于上消化道(UGI)肿瘤性和癌前病变外观细微且疾病患病率低,人工智能(AI)可能会减少漏诊或被忽视的情况。目前仅报道了针对特定疾病的AI性能,这使其临床价值存在不确定性。 设计:我们检索了截至2020年7月的PubMed、Embase和Scopus数据库,以查找关于AI在上消化道病变检测和特征描述中的诊断性能的研究。主要结局指标为AI的综合诊断准确性、敏感性和特异性。次要结局指标为综合阳性预测值(PPV)和阴性预测值(NPV)。我们计算了综合比例率(%),设计了带有各自曲线下面积(AUC)的汇总接收操作特征曲线,并进行了Meta回归和敏感性分析。 结果:总体而言,共纳入了19项关于食管鳞状细胞肿瘤(ESCN)、巴雷特食管相关肿瘤(BERN)或胃腺癌(GCA)检测的研究,分别涉及218、445、453例患者以及7976、2340、13562张图像。UGI肿瘤检测的AI敏感性/特异性/PPV/NPV/阳性似然比/阴性似然比分别为90%(95%CI:85%至94%)/89%(95%CI:85%至92%)/87%(95%CI:83%至91%)/91%(95%CI:87%至94%)/8.2(95%CI:5.7至11.7)/0.111(95%CI:0.071至0.175),总体AUC为0.95(95%CI:0.93至0.97)。未发现ESCN、BERN和GCA之间的AI性能存在差异,其AUC分别为0.94(95%CI:0.52至0.99)、0.96(95%CI:0.95至0.98)、0.93(95%CI:0.83至0.99)。总体而言,研究质量较低,存在较高的选择偏倚风险。未发现明显的发表偏倚。 结论:我们发现AI对上消化道任何肿瘤性病变的诊断具有较高的总体准确性,且与潜在疾病无关。在临床实践中应用时,这有望大幅降低癌前病变和早期癌症的漏诊率。

相似文献

[1]
Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis.

Gut. 2020-10-30

[2]
Endoscopists' diagnostic accuracy in detecting upper gastrointestinal neoplasia in the framework of artificial intelligence studies.

Endoscopy. 2022-4

[3]
Diagnostic Accuracy of Artificial Intelligence (AI) to Detect Early Neoplasia in Barrett's Esophagus: A Non-comparative Systematic Review and Meta-Analysis.

Front Med (Lausanne). 2022-6-22

[4]
Accuracy of artificial intelligence-assisted detection of upper GI lesions: a systematic review and meta-analysis.

Gastrointest Endosc. 2020-10

[5]
Diagnostic Performance of Artificial Intelligence-Based Models for the Detection of Early Esophageal Cancers in Barret's Esophagus: A Meta-Analysis of Patient-Based Studies.

Cureus. 2021-6-4

[6]
Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases.

Aliment Pharmacol Ther. 2022-3

[7]
Artificial Intelligence and Deep Learning for Upper Gastrointestinal Neoplasia.

Gastroenterology. 2022-4

[8]
Umbrella systematic review of potential quality indicators for the detection of dysplasia and cancer at upper gastrointestinal endoscopy.

Endosc Int Open. 2023-9-15

[9]
Application of artificial intelligence for diagnosis of pancreatic ductal adenocarcinoma by EUS: A systematic review and meta-analysis.

Endosc Ultrasound. 2022

[10]
Current Evidence and Future Perspective of Accuracy of Artificial Intelligence Application for Early Gastric Cancer Diagnosis With Endoscopy: A Systematic and Meta-Analysis.

Front Med (Lausanne). 2021-3-15

引用本文的文献

[1]
Assessing response in endoscopy images of esophageal cancer treated with total neoadjuvant therapy via hybrid-architecture ensemble deep learning.

Front Oncol. 2025-5-6

[2]
Methodological and reporting quality of machine learning studies on cancer diagnosis, treatment, and prognosis.

Front Oncol. 2025-4-14

[3]
The application of artificial intelligence in upper gastrointestinal cancers.

J Natl Cancer Cent. 2024-12-27

[4]
Diagnostic performance of AI-assisted endoscopy diagnosis of digestive system tumors: an umbrella review.

Front Oncol. 2025-4-3

[5]
Artificial Intelligence Performance in Image-Based Cancer Identification: Umbrella Review of Systematic Reviews.

J Med Internet Res. 2025-4-1

[6]
Convolutional Neural Network Model for Intestinal Metaplasia Recognition in Gastric Corpus Using Endoscopic Image Patches.

Diagnostics (Basel). 2024-6-28

[7]
Diagnostic accuracy of endocytoscopy via artificial intelligence in colorectal lesions: A systematic review and meta‑analysis.

PLoS One. 2023

[8]
Revolutionizing healthcare by use of artificial intelligence in esophageal carcinoma - a narrative review.

Ann Med Surg (Lond). 2023-8-15

[9]
Biomarkers for Early Detection, Prognosis, and Therapeutics of Esophageal Cancers.

Int J Mol Sci. 2023-2-7

[10]
Diagnosis and segmentation effect of the ME-NBI-based deep learning model on gastric neoplasms in patients with suspected superficial lesions - a multicenter study.

Front Oncol. 2023-1-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索