文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过混合架构集成深度学习评估接受全新辅助治疗的食管癌内镜图像中的反应。

Assessing response in endoscopy images of esophageal cancer treated with total neoadjuvant therapy via hybrid-architecture ensemble deep learning.

作者信息

Yuan Peng, Liu Meichen, He Hangzhou, Dai Liang, Wu Ya-Ya, Chen Ke-Neng, Wu Qi, Lu Yanye

机构信息

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Endoscopy Center, Peking University Cancer Hospital and Institute, Beijing, China.

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Endoscopy Center, Peking University Cancer Hospital and Institute, Peking University School of Oncology, Beijing, China.

出版信息

Front Oncol. 2025 May 6;15:1590448. doi: 10.3389/fonc.2025.1590448. eCollection 2025.


DOI:10.3389/fonc.2025.1590448
PMID:40395323
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12089136/
Abstract

BACKGROUND AND AIMS: Esophageal cancer (EC) patients may achieve pathological complete response (pCR) after receiving total neoadjuvant therapy (TNT), which allows them to avoid surgery and preserve organs. We aimed to benchmark the performance of existing artificial intelligence (AI) methods and develop a more accurate model for evaluating EC patients' response after TNT. METHODS: We built the Beijing-EC-TNT dataset, consisting of 7,359 images from 300 EC patients who underwent TNT at Beijing Cancer Hospital. The dataset was divided into Cohort1 (4,561 images, 209 patients) for cross-validation and Cohort 2 (2,798 images, 91 patients) for external evaluation. Patients and endoscopic images were labeled as either pCR or non-pCR based on postoperative pathology results. We systematically evaluated mainstream AI models and proposed EC-HAENet, a hybrid-architecture ensembled deep learning model. RESULTS: In image-level classification, EC-HAENet achieved an area under the curve of 0.98 in Cohort 1 and 0.99 in Cohort 2. In patient-level classification, the accuracy of EC-HAENet was significantly higher than that of endoscopic biopsy in both Cohorts 1 and 2 (accuracy, 0.93 . 0.78, P<0.0001 and 0.93 . 0.71, P<0.0001). CONCLUSION: EC-HAENet can assist endoscopists in accurately evaluating the response of EC patients after TNT.

摘要

背景与目的:食管癌(EC)患者在接受全新辅助治疗(TNT)后可能实现病理完全缓解(pCR),这使他们能够避免手术并保留器官。我们旨在评估现有人工智能(AI)方法的性能,并开发一个更准确的模型来评估EC患者在TNT后的反应。 方法:我们构建了北京-EC-TNT数据集,该数据集由在北京肿瘤医院接受TNT的300例EC患者的7359张图像组成。该数据集被分为用于交叉验证的队列1(4561张图像,209例患者)和用于外部评估的队列2(2798张图像,91例患者)。根据术后病理结果,将患者和内镜图像标记为pCR或非pCR。我们系统地评估了主流AI模型,并提出了EC-HAENet,一种混合架构集成深度学习模型。 结果:在图像水平分类中,EC-HAENet在队列1中的曲线下面积为0.98,在队列2中为0.99。在患者水平分类中,EC-HAENet在队列1和队列2中的准确率均显著高于内镜活检(准确率分别为0.93对0.78,P<0.0001;0.93对0.71,P<0.0001)。 结论:EC-HAENet可以协助内镜医师准确评估EC患者在TNT后的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d73/12089136/7558ce29e78a/fonc-15-1590448-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d73/12089136/993458cc19f0/fonc-15-1590448-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d73/12089136/dc017daa960e/fonc-15-1590448-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d73/12089136/e6acd79bfa4e/fonc-15-1590448-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d73/12089136/7558ce29e78a/fonc-15-1590448-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d73/12089136/993458cc19f0/fonc-15-1590448-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d73/12089136/dc017daa960e/fonc-15-1590448-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d73/12089136/e6acd79bfa4e/fonc-15-1590448-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d73/12089136/7558ce29e78a/fonc-15-1590448-g004.jpg

相似文献

[1]
Assessing response in endoscopy images of esophageal cancer treated with total neoadjuvant therapy via hybrid-architecture ensemble deep learning.

Front Oncol. 2025-5-6

[2]
Differential diagnosis for esophageal protruded lesions using a deep convolution neural network in endoscopic images.

Gastrointest Endosc. 2021-6

[3]
Assessing Endoscopic Response in Locally Advanced Rectal Cancer Treated with Total Neoadjuvant Therapy: Development and Validation of a Highly Accurate Convolutional Neural Network.

Ann Surg Oncol. 2024-10

[4]
AI analysis and modified type classification for endocytoscopic observation of esophageal lesions.

Dis Esophagus. 2022-9-14

[5]
Endoscopic Evaluation of Pathological Complete Response Using Deep Neural Network in Esophageal Cancer Patients Who Received Neoadjuvant Chemotherapy-Multicenter Retrospective Study from Four Japanese Esophageal Centers.

Ann Surg Oncol. 2023-11

[6]
Endoscopy-Based Deep Convolutional Neural Network Predicts Response to Neoadjuvant Treatment for Locally Advanced Rectal Cancer.

Front Physiol. 2022-4-27

[7]
Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: A multicentre, retrospective cohort study.

EClinicalMedicine. 2022-7-30

[8]
The use of deep learning on endoscopic images to assess the response of rectal cancer after chemoradiation.

Surg Endosc. 2022-5

[9]
Analysis of mammograms using artificial intelligence to predict response to neoadjuvant chemotherapy in breast cancer patients: proof of concept.

Eur Radiol. 2022-5

[10]
Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy.

J Immunother Cancer. 2025-3-15

本文引用的文献

[1]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[2]
Neoadjuvant nivolumab or nivolumab plus LAG-3 inhibitor relatlimab in resectable esophageal/gastroesophageal junction cancer: a phase Ib trial and ctDNA analyses.

Nat Med. 2024-4

[3]
Long-Term Survival and Recurrence Patterns in Locally Advanced Esophageal Squamous Cell Carcinoma Patients with Pathologic Complete Response After Neoadjuvant Chemotherapy Followed by Surgery.

Ann Surg Oncol. 2024-8

[4]
Endoscopic Evaluation of Pathological Complete Response Using Deep Neural Network in Esophageal Cancer Patients Who Received Neoadjuvant Chemotherapy-Multicenter Retrospective Study from Four Japanese Esophageal Centers.

Ann Surg Oncol. 2023-11

[5]
Bite-on-bite biopsies for the detection of residual esophageal cancer after neoadjuvant chemoradiotherapy.

Endoscopy. 2022-12

[6]
Paclitaxel and cisplatin with or without cetuximab in metastatic esophageal squamous cell carcinoma: a randomized, multicenter phase II trial.

Innovation (Camb). 2022-4-4

[7]
A prediction model for pathological findings after neoadjuvant chemoradiotherapy for resectable locally advanced esophageal squamous cell carcinoma based on endoscopic images using deep learning.

Br J Radiol. 2022-7-1

[8]
A Novel Deep Learning System for Diagnosing Early Esophageal Squamous Cell Carcinoma: A Multicenter Diagnostic Study.

Clin Transl Gastroenterol. 2021-8-4

[9]
Usefulness of an artificial intelligence system for the detection of esophageal squamous cell carcinoma evaluated with videos simulating overlooking situation.

Dig Endosc. 2021-11

[10]
Preoperative pembrolizumab combined with chemoradiotherapy for oesophageal squamous cell carcinoma (PALACE-1).

Eur J Cancer. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索