Suppr超能文献

人工智能(AI)检测巴雷特食管早期肿瘤的诊断准确性:一项非比较性系统评价和荟萃分析

Diagnostic Accuracy of Artificial Intelligence (AI) to Detect Early Neoplasia in Barrett's Esophagus: A Non-comparative Systematic Review and Meta-Analysis.

作者信息

Tan Jin Lin, Chinnaratha Mohamed Asif, Woodman Richard, Martin Rory, Chen Hsiang-Ting, Carneiro Gustavo, Singh Rajvinder

机构信息

Department of Gastroenterology and Hepatology, Lyell McEwin Hospital, SA Health, Elizabeth Vale, SA, Australia.

Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.

出版信息

Front Med (Lausanne). 2022 Jun 22;9:890720. doi: 10.3389/fmed.2022.890720. eCollection 2022.

Abstract

BACKGROUND AND AIMS

Artificial Intelligence (AI) is rapidly evolving in gastrointestinal (GI) endoscopy. We undertook a systematic review and meta-analysis to assess the performance of AI at detecting early Barrett's neoplasia.

METHODS

We searched Medline, EMBASE and Cochrane Central Register of controlled trials database from inception to the 28th Jan 2022 to identify studies on the detection of early Barrett's neoplasia using AI. Study quality was assessed using Quality Assessment of Diagnostic Accuracy Studies - 2 (QUADAS-2). A random-effects model was used to calculate pooled sensitivity, specificity, and diagnostics odds ratio (DOR). Forest plots and a summary of the receiving operating characteristics (SROC) curves displayed the outcomes. Heterogeneity was determined by , Tau statistics and -value. The funnel plots and Deek's test were used to assess publication bias.

RESULTS

Twelve studies comprising of 1,361 patients (utilizing 532,328 images on which the various AI models were trained) were used. The SROC was 0.94 (95% CI: 0.92-0.96). Pooled sensitivity, specificity and diagnostic odds ratio were 90.3% (95% CI: 87.1-92.7%), 84.4% (95% CI: 80.2-87.9%) and 48.1 (95% CI: 28.4-81.5), respectively. Subgroup analysis of AI models trained only on white light endoscopy was similar with pooled sensitivity and specificity of 91.2% (95% CI: 85.7-94.7%) and 85.1% (95% CI: 81.6%-88.1%), respectively.

CONCLUSIONS

AI is highly accurate at detecting early Barrett's neoplasia and validated for patients with at least high-grade dysplasia and above. Further well-designed prospective randomized controlled studies of all histopathological subtypes of early Barrett's neoplasia are needed to confirm these findings further.

摘要

背景与目的

人工智能(AI)在胃肠(GI)内镜检查中正在迅速发展。我们进行了一项系统评价和荟萃分析,以评估AI在检测早期巴雷特肿瘤形成方面的性能。

方法

我们检索了从数据库建立至2022年1月28日的Medline、EMBASE和Cochrane对照试验中央注册库,以识别使用AI检测早期巴雷特肿瘤形成的研究。使用诊断准确性研究质量评估-2(QUADAS-2)评估研究质量。采用随机效应模型计算合并敏感度、特异度和诊断比值比(DOR)。森林图和受试者操作特征(SROC)曲线汇总显示了结果。异质性通过 、Tau统计量和 -值确定。漏斗图和Deek检验用于评估发表偏倚。

结果

使用了12项研究,共1361例患者(利用532328张图像训练各种AI模型)。SROC为0.94(95%CI:0.92 - 0.96)。合并敏感度、特异度和诊断比值比分别为90.3%(95%CI:87.1 - 92.7%)、84.4%(95%CI:80.2 - 87.9%)和48.1(95%CI:28.4 - 81.5)。仅在白光内镜检查上训练的AI模型的亚组分析结果相似,合并敏感度和特异度分别为91.2%(95%CI:85.7 - 94.7%)和85.1%(95%CI:81.6% - 88.1%)。

结论

AI在检测早期巴雷特肿瘤形成方面具有高度准确性,并且在至少高级别发育异常及以上的患者中得到了验证。需要进一步开展针对早期巴雷特肿瘤形成所有组织病理学亚型的精心设计的前瞻性随机对照研究,以进一步证实这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/669d/9258946/6f0da8b84d84/fmed-09-890720-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验