Minić Simeon, Annighöfer Burkhard, Hélary Arnaud, Hamdane Djemel, Hui Bon Hoa Gaston, Loupiac Camille, Brûlet Annie, Combet Sophie
Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France.
Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR12 CEA-CNRS, CEA-Saclay, Gif-sur-Yvette CEDEX, France.
Biophys J. 2020 Dec 1;119(11):2262-2274. doi: 10.1016/j.bpj.2020.10.019. Epub 2020 Oct 29.
To probe intermediate states during unfolding and oligomerization of proteins remains a major challenge. High pressure (HP) is a powerful tool for studying these problems, revealing subtle structural changes in proteins not accessible by other means of denaturation. Bovine β-lactoglobulin (BLG), the main whey protein, has a strong propensity to bind various bioactive molecules such as retinol and resveratrol, two ligands with different affinity and binding sites. By combining in situ HP-small-angle neutron scattering (SANS) and HP-ultraviolet/visible absorption spectroscopy, we report the specific effects of these ligands on three-dimensional conformational and local changes in BLG induced by HP. Depending on BLG concentration, two different unfolding mechanisms are observed in situ under pressures up to ∼300 MPa: either a complete protein unfolding, from native dimers to Gaussian chains, or a partial unfolding with oligomerization in tetramers mediated by disulfide bridges. Retinol, which has a high affinity for the BLG hydrophobic cavity, significantly stabilizes BLG both in three-dimensional and local environments by shifting the onset of protein unfolding by ∼100 MPa. Increasing temperature from 30 to 37°C enhances the hydrophobic stabilization effects of retinol. In contrast, resveratrol, which has a low binding affinity for site(s) on the surface of the BLG, does not induce any significant effect on the structural changes of BLG due to pressure. HP treatment back and forth up to ∼300 MPa causes irreversible covalent oligomerization of BLG. Ab initio modeling of SANS shows that the oligomers formed from the BLG-retinol complex are smaller and more elongated compared to BLG without ligand or in the presence of resveratrol. By combining HP-SANS and HP-ultraviolet/visible absorption spectroscopy, our strategy highlights the crucial role of BLG hydrophobic cavity and opens up new possibilities for the structural determination of HP-induced protein folding intermediates and irreversible oligomerization.
探究蛋白质展开和寡聚化过程中的中间状态仍然是一项重大挑战。高压(HP)是研究这些问题的有力工具,它能揭示蛋白质中其他变性方法无法检测到的细微结构变化。牛β-乳球蛋白(BLG)是主要的乳清蛋白,具有强烈的结合各种生物活性分子的倾向,如视黄醇和白藜芦醇,这两种配体具有不同的亲和力和结合位点。通过结合原位高压小角中子散射(SANS)和高压紫外/可见吸收光谱,我们报告了这些配体对高压诱导的BLG三维构象和局部变化的具体影响。根据BLG浓度,在高达约300 MPa的压力下原位观察到两种不同的展开机制:要么是蛋白质完全展开,从天然二聚体转变为高斯链,要么是部分展开并通过二硫键介导形成四聚体寡聚化。对视黄醇对BLG疏水腔具有高亲和力,通过将蛋白质展开的起始压力提高约100 MPa,在三维和局部环境中显著稳定了BLG。将温度从30℃升高到37℃增强了视黄醇的疏水稳定作用。相比之下,白藜芦醇对BLG表面位点的结合亲和力较低,对压力引起的BLG结构变化没有诱导任何显著影响。高达约300 MPa的反复高压处理导致BLG发生不可逆的共价寡聚化。SANS的从头建模表明,与没有配体或存在白藜芦醇的BLG相比,由BLG-视黄醇复合物形成的寡聚体更小且更细长。通过结合高压SANS和高压紫外/可见吸收光谱,我们的策略突出了BLG疏水腔的关键作用,并为高压诱导的蛋白质折叠中间体和不可逆寡聚化的结构测定开辟了新的可能性。