Suppr超能文献

从 fMRI 数据中重建呼吸变化信号。

Reconstruction of respiratory variation signals from fMRI data.

机构信息

Department of Electrical Engineering and Computer Science, Vanderbilt University, USA.

Department of Electrical Engineering and Computer Science, Vanderbilt University, USA.

出版信息

Neuroimage. 2021 Jan 15;225:117459. doi: 10.1016/j.neuroimage.2020.117459. Epub 2020 Oct 28.

Abstract

Functional MRI signals can be heavily influenced by systemic physiological processes in addition to local neural activity. For example, widespread hemodynamic fluctuations across the brain have been found to correlate with natural, low-frequency variations in the depth and rate of breathing over time. Acquiring peripheral measures of respiration during fMRI scanning not only allows for modeling such effects in fMRI analysis, but also provides valuable information for interrogating brain-body physiology. However, physiological recordings are frequently unavailable or have insufficient quality. Here, we propose a computational technique for reconstructing continuous low-frequency respiration volume (RV) fluctuations from fMRI data alone. We evaluate the performance of this approach across different fMRI preprocessing strategies. Further, we demonstrate that the predicted RV signals can account for similar patterns of temporal variation in resting-state fMRI data compared to measured RV fluctuations. These findings indicate that fluctuations in respiration volume can be extracted from fMRI alone, in the common scenario of missing or corrupted respiration recordings. The results have implications for enriching a large volume of existing fMRI datasets through retrospective addition of respiratory variations information.

摘要

功能磁共振成像信号除了受到局部神经活动的影响外,还可能受到全身生理过程的强烈影响。例如,已经发现大脑中广泛的血液动力学波动与随时间变化的呼吸深度和速率的自然低频变化相关。在 fMRI 扫描期间获取呼吸的外周测量值不仅允许在 fMRI 分析中对这些效应进行建模,而且还为探究脑-体生理学提供了有价值的信息。然而,生理记录经常不可用或质量不足。在这里,我们提出了一种从 fMRI 数据中单独重建连续低频呼吸容积 (RV) 波动的计算技术。我们评估了这种方法在不同 fMRI 预处理策略下的性能。此外,我们证明与测量的 RV 波动相比,预测的 RV 信号可以解释静息状态 fMRI 数据中相似的时间变化模式。这些发现表明,在呼吸记录缺失或损坏的常见情况下,可以从 fMRI 中提取呼吸容积的波动。这些结果对于通过回顾性添加呼吸变化信息来丰富大量现有的 fMRI 数据集具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6817/7868104/b1246cfc4081/nihms-1659125-f0001.jpg

相似文献

1
Reconstruction of respiratory variation signals from fMRI data.
Neuroimage. 2021 Jan 15;225:117459. doi: 10.1016/j.neuroimage.2020.117459. Epub 2020 Oct 28.
2
Improved 7 Tesla resting-state fMRI connectivity measurements by cluster-based modeling of respiratory volume and heart rate effects.
Neuroimage. 2017 Jun;153:262-272. doi: 10.1016/j.neuroimage.2017.04.009. Epub 2017 Apr 6.
4
The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI.
Neuroimage. 2013 Jan 15;65:499-510. doi: 10.1016/j.neuroimage.2012.09.044. Epub 2012 Sep 25.
5
Neural underpinning of a respiration-associated resting-state fMRI network.
Elife. 2022 Oct 20;11:e81555. doi: 10.7554/eLife.81555.
7
Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data.
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2105-E2114. doi: 10.1073/pnas.1720985115. Epub 2018 Feb 12.
8
Characteristics of respiratory measures in young adults scanned at rest, including systematic changes and "missed" deep breaths.
Neuroimage. 2020 Jan 1;204:116234. doi: 10.1016/j.neuroimage.2019.116234. Epub 2019 Oct 5.
9
Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI.
Neuroimage. 2006 Jul 15;31(4):1536-48. doi: 10.1016/j.neuroimage.2006.02.048. Epub 2006 Apr 24.
10
The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data.
J Neurosci Methods. 2017 Jan 30;276:56-72. doi: 10.1016/j.jneumeth.2016.10.019. Epub 2016 Nov 8.

引用本文的文献

1
Functional MRI signals exhibit stronger covariation with peripheral autonomic measures as vigilance decreases.
Imaging Neurosci (Camb). 2024 Sep 13;2. doi: 10.1162/imag_a_00287. eCollection 2024.
2
Detection of respiration-induced field modulations in fMRI: A concurrent and navigator-free approach.
Imaging Neurosci (Camb). 2024 Feb 12;2. doi: 10.1162/imag_a_00091. eCollection 2024.
3
Vasomotor fluctuations are increased in primary central nervous system lymphoma: a case-control study with fast functional MRI.
Brain Commun. 2025 Jul 8;7(4):fcaf262. doi: 10.1093/braincomms/fcaf262. eCollection 2025.
4
Physiological Confounds in BOLD-fMRI and Their Correction.
NMR Biomed. 2025 Jul;38(7):e70076. doi: 10.1002/nbm.70076.
7
Deep-learning-enabled brain hemodynamic mapping using resting-state fMRI.
NPJ Digit Med. 2023 Jun 21;6(1):116. doi: 10.1038/s41746-023-00859-y.
9
Less is more: balancing noise reduction and data retention in fMRI with data-driven scrubbing.
Neuroimage. 2023 Apr 15;270:119972. doi: 10.1016/j.neuroimage.2023.119972. Epub 2023 Feb 25.

本文引用的文献

2
Physiological changes in sleep that affect fMRI inference.
Curr Opin Behav Sci. 2020 Jun;33:42-50. doi: 10.1016/j.cobeha.2019.12.007. Epub 2019 Dec 23.
3
Vascular physiology drives functional brain networks.
Neuroimage. 2020 Aug 15;217:116907. doi: 10.1016/j.neuroimage.2020.116907. Epub 2020 May 6.
4
Resting-state "physiological networks".
Neuroimage. 2020 Jun;213:116707. doi: 10.1016/j.neuroimage.2020.116707. Epub 2020 Mar 5.
5
Sympathetic activity contributes to the fMRI signal.
Commun Biol. 2019 Nov 18;2:421. doi: 10.1038/s42003-019-0659-0. eCollection 2019.
6
Model-based physiological noise removal in fast fMRI.
Neuroimage. 2020 Jan 15;205:116231. doi: 10.1016/j.neuroimage.2019.116231. Epub 2019 Oct 4.
8
Distinctions among real and apparent respiratory motions in human fMRI data.
Neuroimage. 2019 Nov 1;201:116041. doi: 10.1016/j.neuroimage.2019.116041. Epub 2019 Jul 22.
10
Classification of temporal ICA components for separating global noise from fMRI data: Reply to Power.
Neuroimage. 2019 Aug 15;197:435-438. doi: 10.1016/j.neuroimage.2019.04.046. Epub 2019 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验