Hou Xirui, Guo Pengfei, Wang Puyang, Liu Peiying, Lin Doris D M, Fan Hongli, Li Yang, Wei Zhiliang, Lin Zixuan, Jiang Dengrong, Jin Jin, Kelly Catherine, Pillai Jay J, Huang Judy, Pinho Marco C, Thomas Binu P, Welch Babu G, Park Denise C, Patel Vishal M, Hillis Argye E, Lu Hanzhang
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
NPJ Digit Med. 2023 Jun 21;6(1):116. doi: 10.1038/s41746-023-00859-y.
Cerebrovascular disease is a leading cause of death globally. Prevention and early intervention are known to be the most effective forms of its management. Non-invasive imaging methods hold great promises for early stratification, but at present lack the sensitivity for personalized prognosis. Resting-state functional magnetic resonance imaging (rs-fMRI), a powerful tool previously used for mapping neural activity, is available in most hospitals. Here we show that rs-fMRI can be used to map cerebral hemodynamic function and delineate impairment. By exploiting time variations in breathing pattern during rs-fMRI, deep learning enables reproducible mapping of cerebrovascular reactivity (CVR) and bolus arrival time (BAT) of the human brain using resting-state CO fluctuations as a natural "contrast media". The deep-learning network is trained with CVR and BAT maps obtained with a reference method of CO-inhalation MRI, which includes data from young and older healthy subjects and patients with Moyamoya disease and brain tumors. We demonstrate the performance of deep-learning cerebrovascular mapping in the detection of vascular abnormalities, evaluation of revascularization effects, and vascular alterations in normal aging. In addition, cerebrovascular maps obtained with the proposed method exhibit excellent reproducibility in both healthy volunteers and stroke patients. Deep-learning resting-state vascular imaging has the potential to become a useful tool in clinical cerebrovascular imaging.
脑血管疾病是全球主要的死亡原因之一。已知预防和早期干预是其最有效的管理形式。非侵入性成像方法对早期分层很有前景,但目前缺乏个性化预后的敏感性。静息态功能磁共振成像(rs-fMRI)是一种以前用于绘制神经活动的强大工具,大多数医院都有。在这里,我们表明rs-fMRI可用于绘制脑血流动力学功能并描绘损伤情况。通过利用rs-fMRI期间呼吸模式的时间变化,深度学习能够利用静息态CO波动作为天然“对比剂”,对人脑的脑血管反应性(CVR)和团注到达时间(BAT)进行可重复的映射。深度学习网络使用通过CO吸入MRI参考方法获得的CVR和BAT图谱进行训练,该方法包括来自年轻和老年健康受试者以及烟雾病和脑肿瘤患者的数据。我们展示了深度学习脑血管映射在检测血管异常、评估血运重建效果以及正常衰老过程中的血管变化方面的性能。此外,用所提出的方法获得的脑血管图谱在健康志愿者和中风患者中均表现出出色的可重复性。深度学习静息态血管成像有可能成为临床脑血管成像中的一种有用工具。