Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Paris, France.
Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Paris, France.
Biophys J. 2020 Dec 1;119(11):2153-2165. doi: 10.1016/j.bpj.2020.10.027. Epub 2020 Oct 31.
Unraveling how neural networks process and represent sensory information and how these cellular signals instruct behavioral output is a main goal in neuroscience. Two-photon activation of optogenetic actuators and calcium (Ca) imaging with genetically encoded indicators allow, respectively, the all-optical stimulation and readout of activity from genetically identified cell populations. However, these techniques locally expose the brain to high near-infrared light doses, raising the concern of light-induced adverse effects on the biology under study. Combining 2P imaging of Ca transients in GCaMP6f-expressing cortical astrocytes and unbiased machine-based event detection, we demonstrate the subtle build-up of aberrant microdomain Ca transients in the fine astroglial processes that depended on the average rather than peak laser power. Illumination conditions routinely being used in biological 2P microscopy (920-nm excitation, ∼100-fs, and ∼10 mW average power) increased the frequency of microdomain Ca events but left their amplitude, area, and duration largely unchanged. Ca transients in the otherwise silent soma were secondary to this peripheral hyperactivity that occurred without overt morphological damage. Continuous-wave (nonpulsed) 920-nm illumination at the same average power was as damaging as femtosecond pulses, unraveling the dominance of a heating-mediated damage mechanism. In an astrocyte-specific inositol 3-phosphate receptor type-2 knockout mouse, near-infrared light-induced Ca microdomains persisted in the small processes, underpinning their resemblance to physiological inositol 3-phosphate receptor type-2-independent Ca signals, whereas somatic hyperactivity was abolished. We conclude that, contrary to what has generally been believed in the field, shorter pulses and lower average power can help to alleviate damage and allow for longer recording windows at 920 nm.
揭示神经网络如何处理和表示感觉信息,以及这些细胞信号如何指导行为输出,是神经科学的主要目标。光遗传学执行器的双光子激活和具有遗传编码指示剂的钙(Ca)成像分别允许对遗传鉴定的细胞群体进行全光学刺激和活性读出。然而,这些技术会使大脑局部暴露在近红外光剂量下,这引起了对光诱导的对所研究生物学的不利影响的担忧。通过表达 GCaMP6f 的皮质星形胶质细胞的 2P 钙瞬变成像和基于机器的无偏事件检测相结合,我们证明了在精细的星形胶质细胞突起中,异常微区钙瞬变的微妙积累取决于平均而非峰值激光功率。在生物 2P 显微镜中常规使用的照明条件(920nm 激发、约 100fs 和约 10mW 平均功率)增加了微区钙事件的频率,但基本保持了其幅度、面积和持续时间不变。这种在其他方面沉默的胞体中的钙瞬变是这种外周过度活跃的结果,而这种过度活跃没有明显的形态损伤。相同平均功率的连续波(非脉冲)920nm 照射与飞秒脉冲一样具有破坏性,揭示了加热介导的损伤机制的主导地位。在星形胶质细胞特异性肌醇 1,4,5-三磷酸受体 2 敲除小鼠中,近红外光诱导的 Ca 微区在小突起中持续存在,这支持了它们与生理肌醇 1,4,5-三磷酸受体 2 非依赖性 Ca 信号的相似性,而胞体过度活跃则被消除。我们的结论是,与该领域普遍认为的相反,较短的脉冲和较低的平均功率可以帮助减轻损伤,并允许在 920nm 下更长的记录窗口。