Suppr超能文献

鲸目动物的眼外斜肌:整体结构和副起点。

The oblique extraocular muscles in cetaceans: Overall architecture and accessory insertions.

机构信息

Department of Anatomy, College of Medicine, Howard University, Washington, DC, USA.

Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA.

出版信息

J Anat. 2021 Apr;238(4):917-941. doi: 10.1111/joa.13347. Epub 2020 Oct 31.

Abstract

The oblique extraocular muscles (EOMs) were dissected in 19 cetacean species and 10 non-cetacean mammalian species. Both superior oblique (SO) and inferior oblique (IO) muscles in cetaceans are well developed in comparison to out-groups and have unique anatomical features likely related to cetacean orbital configurations, swimming mechanics, and visual behaviors. Cetacean oblique muscles originate at skeletal locations typical for mammals: SO, from a common tendinous cone surrounding the optic nerve and from the medially adjacent bone surface at the orbital apex; IO, from the maxilla adjacent to lacrimal and frontal bones. However, because of the unusual orbital geometry in cetaceans, the paths and relations of SO and IO running toward their insertions onto the temporal ocular sclera are more elaborate than in humans and most other mammals. The proximal part of the SO extends from its origin at the apex along the dorsomedial aspect of the orbital contents to a strong fascial connection proximal to the preorbital process of the frontal bone, likely the cetacean homolog of the typical mammalian trochlea. However, the SO does not turn at this connection but continues onward, still a fleshy cylinder, until turning sharply as it passes through the external circular muscle (ECM) and parts of the palpebral belly of the superior rectus muscle. Upon departing this "functional trochlea" the SO forms a primary scleral insertion and multiple accessory insertions (AIs) onto adjacent EOM tendons and fascial structures. The primary SO scleral insertions are broad and muscular in most cetacean species examined, while in the mysticete minke whale (Balaenoptera acutorostrata) and fin whale (Balaenoptera physalus) the muscular SO bellies transition into broad fibrous tendons of insertion. The IO in cetaceans originates from an elongated fleshy attachment oriented laterally on the maxilla and continues laterally as a tubular belly before turning caudally at a sharp bend where it is constrained by the ECM and parts of the inferior rectus which form a functional trochlea as with the SO. The IO continues to a fleshy primary insertion on the temporal sclera but, as with SO, also has multiple AIs onto adjacent rectus tendons and connective tissue. The multiple IO insertions were particularly well developed in pygmy sperm whale (Kogia breviceps), minke whale and fin whale. AIs of both SO and IO muscles onto multiple structures as seen in cetaceans have been described in humans and domesticated mammals. The AIs of oblique EOMs seen in all these groups, as well as the unique "functional trochleae" of cetacean SO and IO seem likely to function in constraining the lines of action at the primary scleral insertions of the oblique muscles. The gimble-like sling formed by SO and IO in cetaceans suggest that the "primary" actions of the cetacean oblique EOMs are not only to produce ocular counter-rotations during up-down pitch movements of the head during swimming but also to rotate the plane containing the functional origins of the rectus muscles during other gaze changes.

摘要

斜肌(EOMs)在 19 种鲸类动物和 10 种非鲸类哺乳动物中进行了解剖。与对照组相比,鲸类的上斜肌(SO)和下斜肌(IO)都发育良好,并且具有独特的解剖特征,可能与鲸类的眼眶结构、游泳力学和视觉行为有关。鲸类的斜肌起源于骨骼位置,与哺乳动物相似:SO 起源于视神经周围的一个共同腱圆锥体和眶顶内侧相邻的骨表面;IO 起源于邻近泪骨和额骨的上颌骨。然而,由于鲸类的眼眶形状异常,SO 和 IO 向其在颞侧眼球巩膜上的插入点的路径和关系比在人类和大多数其他哺乳动物中更为复杂。SO 的近端部分从其在顶点的起源处沿着眶内容物的背内侧延伸到额骨前眶突附近的一个坚固的筋膜连接处,可能是典型哺乳动物滑车的鲸类同源物。然而,SO 在这个连接点处并没有转弯,而是继续向前延伸,仍然是一个肉质的圆柱体,直到它穿过外部圆形肌肉(ECM)和部分上直肌的眼轮匝肌腹时急剧转弯。离开这个“功能性滑车”后,SO 形成一个主要的巩膜插入点和多个附属插入点(AIs)到相邻的 EOM 肌腱和筋膜结构上。在大多数检查的鲸类物种中,SO 的主要巩膜插入点是宽阔而肌肉发达的,而在须鲸(Balaenoptera acutorostrata)和长须鲸(Balaenoptera physalus)中,SO 的肌肉腹部则逐渐过渡到宽阔的纤维状插入肌腱。IO 在鲸类动物中起源于上颌骨上侧向延伸的拉长的肉质附着体,并继续作为管状腹部向外侧延伸,然后在一个急剧弯曲处向尾侧转弯,在那里它被 ECM 和部分下直肌约束,下直肌形成一个功能性滑车,就像 SO 一样。IO 继续在颞侧巩膜上形成一个肉质的主要插入点,但与 SO 一样,它也有多个 AIs 到相邻的直肌肌腱和结缔组织上。在小抹香鲸(Kogia breviceps)、小须鲸和长须鲸中,IO 的多个插入点发育得特别好。在鲸类动物中看到的 SO 和 IO 肌肉的多个插入点已经在人类和驯化的哺乳动物中被描述过。在所有这些群体中看到的斜肌 EOM 的 AIs,以及鲸类 SO 和 IO 的独特“功能性滑车”,似乎很可能在限制斜肌主要巩膜插入点的作用线上发挥作用。鲸类动物中 SO 和 IO 形成的万向节状吊索表明,鲸类斜肌 EOM 的“主要”作用不仅是在游泳时头部上下俯仰运动中产生眼球反向旋转,而且还在其他注视变化时旋转包含直肌功能起源的平面。

相似文献

1
The oblique extraocular muscles in cetaceans: Overall architecture and accessory insertions.
J Anat. 2021 Apr;238(4):917-941. doi: 10.1111/joa.13347. Epub 2020 Oct 31.
2
The unique rectus extraocular muscles of cetaceans: Homologies and possible functions.
J Anat. 2022 Jun;240(6):1075-1094. doi: 10.1111/joa.13628. Epub 2022 Jan 19.
3
Cetacean Orbital Muscles: Anatomy and Function of the Circular Layers.
Anat Rec (Hoboken). 2020 Jul;303(7):1792-1811. doi: 10.1002/ar.24278. Epub 2019 Nov 13.
7
Observations on the muscles of the eye of the bowhead whale, Balaena mysticetus.
Anat Rec. 2000 Jun 1;259(2):189-204. doi: 10.1002/(SICI)1097-0185(20000601)259:2<189::AID-AR9>3.0.CO;2-H.

引用本文的文献

1
Neuroanatomy of the Cetacean Sensory Systems.
Animals (Basel). 2023 Dec 23;14(1):66. doi: 10.3390/ani14010066.
2
The unique rectus extraocular muscles of cetaceans: Homologies and possible functions.
J Anat. 2022 Jun;240(6):1075-1094. doi: 10.1111/joa.13628. Epub 2022 Jan 19.

本文引用的文献

1
Diagnosis and surgical management of isolated inferior oblique palsy.
Int J Ophthalmol. 2020 Feb 18;13(2):349-355. doi: 10.18240/ijo.2020.02.21. eCollection 2020.
2
3
Cetacean Orbital Muscles: Anatomy and Function of the Circular Layers.
Anat Rec (Hoboken). 2020 Jul;303(7):1792-1811. doi: 10.1002/ar.24278. Epub 2019 Nov 13.
4
Non-commutative, nonlinear, and non-analytic aspects of the ocular motor plant.
Prog Brain Res. 2019;248:93-102. doi: 10.1016/bs.pbr.2019.04.015. Epub 2019 May 20.
5
Selective suppression of the vestibulo-ocular reflex during human locomotion.
J Neurol. 2019 Sep;266(Suppl 1):101-107. doi: 10.1007/s00415-019-09352-7. Epub 2019 May 9.
6
Retinal Topography in Two Species of Baleen Whale (Cetacea: Mysticeti).
Brain Behav Evol. 2018;92(3-4):97-116. doi: 10.1159/000495285. Epub 2019 Jan 24.
7
Moving or being moved: that makes a difference.
J Neurol. 2017 Oct;264(Suppl 1):28-33. doi: 10.1007/s00415-017-8437-8. Epub 2017 Mar 7.
8
Extraocular Muscle Compartments in Superior Oblique Palsy.
Invest Ophthalmol Vis Sci. 2016 Oct 1;57(13):5535-5540. doi: 10.1167/iovs.16-20172.
10
Functional morphometry demonstrates extraocular muscle compartmental contraction during vertical gaze changes.
J Neurophysiol. 2016 Jan 1;115(1):370-8. doi: 10.1152/jn.00825.2015. Epub 2015 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验