Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences , Tehran, Iran.
Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences , Tehran, Iran.
Expert Rev Mol Diagn. 2020 Nov;20(11):1075-1085. doi: 10.1080/14737159.2020.1844006. Epub 2020 Nov 11.
Glioblastoma (GBM) is the most malignant brain cancer because there are no available biopsy-free methods for the diagnosis or the preoperative early detection. In this regard, the development of a non- or minimally invasive methods for early detection could increase the survival rate of GBM patients.
The present study aimed to assess the diagnostic accuracy of extracellular vesicles (EVs) derived RNAs, isolated from patients' CSF or serum for GBM diagnosis. For this purpose, we searched all literature databases and performed a backward and forward reference checking procedure to retrieve appropriate studies. We conducted a meta-analysis on EVs derived biomarkers as well as sensitivity analysis and meta-regression.
We identified EVs-derived 24 RNAs, which can diagnose GBM. The analyzed pooled data showed 76% sensitivity, 80% specificity, and 0.85 AUC, for 16 biomarkers. Besides, the pooled PLR, NLR, and DOR were 3.7, 0.30, and 12, respectively. Subgroup analysis did not show a significant difference between serum and CSF.
According to the pooled sensitivity, specificity, and AUC for EVs derived biomarkers, we suggest that EVs-derived biomarkers might serve as a high potential and noninvasive diagnostic tool for GBM detection using serum and CSF samples.
胶质母细胞瘤(GBM)是最恶性的脑癌,因为目前还没有可用于诊断或术前早期检测的无活检方法。在这方面,开发一种非侵入性或微创的早期检测方法可以提高 GBM 患者的生存率。
本研究旨在评估从患者脑脊液或血清中分离出的细胞外囊泡(EVs)衍生 RNA 对 GBM 诊断的诊断准确性。为此,我们搜索了所有文献数据库,并进行了回溯和前向参考检查程序以检索合适的研究。我们对 EVs 衍生生物标志物进行了荟萃分析,并进行了敏感性分析和荟萃回归。
我们确定了 24 种可诊断 GBM 的 EVs 衍生 RNA。分析的汇总数据显示,16 种生物标志物的敏感性为 76%,特异性为 80%,AUC 为 0.85。此外,PLR、NLR 和 DOR 的汇总值分别为 3.7、0.30 和 12。亚组分析表明血清和脑脊液之间没有显著差异。
根据 EVs 衍生生物标志物的汇总敏感性、特异性和 AUC,我们建议 EVs 衍生生物标志物可能作为一种高潜力的非侵入性诊断工具,用于使用血清和脑脊液样本检测 GBM。