文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Tailored optical propulsion forces for controlled transport of resonant gold nanoparticles and associated thermal convective fluid flows.

作者信息

Rodrigo José A, Angulo Mercedes, Alieva Tatiana

机构信息

Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Universidad Complutense de Madrid, 28040 Madrid, Spain.

出版信息

Light Sci Appl. 2020 Oct 27;9:181. doi: 10.1038/s41377-020-00417-1. eCollection 2020.


DOI:10.1038/s41377-020-00417-1
PMID:33133521
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7589520/
Abstract

Noble metal nanoparticles illuminated at their plasmonic resonance wavelength turn into heat nanosources. This phenomenon has prompted the development of numerous applications in science and technology. Simultaneous optical manipulation of such resonant nanoparticles could certainly extend the functionality and potential applications of optothermal tools. In this article, we experimentally demonstrate optical transport of single and multiple resonant nanoparticles (colloidal gold spheres of radius 200 nm) directed by tailored transverse phase-gradient forces propelling them around a 2D optical trap. We show how the phase-gradient force can be designed to efficiently change the speed of the nanoparticles. We have found that multiple hot nanoparticles assemble in the form of a quasi-stable group whose motion around the laser trap is also controlled by such optical propulsion forces. This assembly experiences a significant increase in the local temperature, which creates an optothermal convective fluid flow dragging tracer particles into the assembly. Thus, the created assembly is a moving heat source controlled by the propulsion force, enabling indirect control of fluid flows as a micro-optofluidic tool. The existence of these flows, probably caused by the temperature-induced Marangoni effect at the liquid water/superheated water interface, is confirmed by tracking free tracer particles migrating towards the assembly. We propose a straightforward method to control the assembly size, and therefore its temperature, by using a nonuniform optical propelling force that induces the splitting or merging of the group of nanoparticles. We envision further development of microscale optofluidic tools based on these achievements.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/7589520/ddc51b49c6ea/41377_2020_417_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/7589520/86e800fddaa2/41377_2020_417_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/7589520/aa8069e90550/41377_2020_417_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/7589520/62d0aae6fb56/41377_2020_417_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/7589520/1996b28f08dc/41377_2020_417_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/7589520/ddc51b49c6ea/41377_2020_417_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/7589520/86e800fddaa2/41377_2020_417_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/7589520/aa8069e90550/41377_2020_417_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/7589520/62d0aae6fb56/41377_2020_417_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/7589520/1996b28f08dc/41377_2020_417_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/7589520/ddc51b49c6ea/41377_2020_417_Fig5_HTML.jpg

相似文献

[1]
Tailored optical propulsion forces for controlled transport of resonant gold nanoparticles and associated thermal convective fluid flows.

Light Sci Appl. 2020-10-27

[2]
Optothermal Manipulations of Colloidal Particles and Living Cells.

Acc Chem Res. 2018-5-25

[3]
Optothermally Assembled Nanostructures.

Acc Mater Res. 2021-5-28

[4]
Photothermal Convection Lithography for Rapid and Direct Assembly of Colloidal Plasmonic Nanoparticles on Generic Substrates.

Small. 2018-10-7

[5]
Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.

Opt Express. 2015-4-6

[6]
All-Optical Trapping and Programmable Transport of Gold Nanorods with Simultaneous Orientation and Spinning Control.

ACS Nano. 2024-10-8

[7]
Multimodal Optothermal Manipulations along Various Surfaces.

ACS Nano. 2023-5-23

[8]
Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation.

Nano Lett. 2018-10-29

[9]
Three-Dimensional Optothermal Manipulation of Light-Absorbing Particles in Phase-Change Gel Media.

ACS Nano. 2024-3-19

[10]
Highly-Adaptable Optothermal Nanotweezers for Trapping, Sorting, and Assembling across Diverse Nanoparticles.

Adv Mater. 2024-3

引用本文的文献

[1]
Laser-Induced Photothermal Pulling of Dyed Droplets on a Superhydrophobic Surface.

Langmuir. 2025-5-13

[2]
Creating stable trapping force and switchable optical torque with tunable phase of light.

Sci Adv. 2022-11-16

[3]
A versatile interferometric technique for probing the thermophysical properties of complex fluids.

Light Sci Appl. 2022-4-28

[4]
Heat-Mediated Optical Manipulation.

Chem Rev. 2022-2-9

本文引用的文献

[1]
Controlling the Dynamics and Optical Binding of Nanoparticle Homodimers with Transverse Phase Gradients.

Nano Lett. 2019-1-9

[2]
Reactive optical matter: light-induced motility in electrodynamically asymmetric nanoscale scatterers.

Light Sci Appl. 2018-12-12

[3]
Photoacoustic response induced by nanoparticle-mediated photothermal bubbles beyond the thermal expansion for potential theranostics.

J Biomed Opt. 2018-12

[4]
Photothermal Convection Lithography for Rapid and Direct Assembly of Colloidal Plasmonic Nanoparticles on Generic Substrates.

Small. 2018-10-7

[5]
Programmable optical transport of particles in knot circuits and networks.

Opt Lett. 2018-9-1

[6]
Dynamic morphing of 3D curved laser traps for all-optical manipulation of particles.

Opt Express. 2018-7-9

[7]
Direct Visualization of Barrier Crossing Dynamics in a Driven Optical Matter System.

ACS Nano. 2018-6-26

[8]
Optofluidic transport and manipulation of plasmonic nanoparticles by thermocapillary convection.

Soft Matter. 2018-1-24

[9]
Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing.

Nano Lett. 2017-8-17

[10]
Driven optical matter: Dynamics of electrodynamically coupled nanoparticles in an optical ring vortex.

Phys Rev E. 2017-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索