Suppr超能文献

一种用于探测复杂流体热物理性质的多功能干涉测量技术。

A versatile interferometric technique for probing the thermophysical properties of complex fluids.

作者信息

Verma Gopal, Yadav Gyanendra, Saraj Chaudry Sajed, Li Longnan, Miljkovic Nenad, Delville Jean Pierre, Li Wei

机构信息

GPL Photonics Lab, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China.

School of Physical Sciences, University of Liverpool, Liverpool, L69 3BX, UK.

出版信息

Light Sci Appl. 2022 Apr 28;11(1):115. doi: 10.1038/s41377-022-00796-7.

Abstract

Laser-induced thermocapillary deformation of liquid surfaces has emerged as a promising tool to precisely characterize the thermophysical properties of pure fluids. However, challenges arise for nanofluid (NF) and soft bio-fluid systems where the direct interaction of the laser generates an intriguing interplay between heating, momentum, and scattering forces which can even damage soft biofluids. Here, we report a versatile, pump-probe-based, rapid, and non-contact interferometric technique that resolves interface dynamics of complex fluids with the precision of ~1 nm in thick-film and 150 pm in thin-film regimes below the thermal limit without the use of lock-in or modulated beams. We characterize the thermophysical properties of complex NF in three exclusively different types of configurations. First, when the NF is heated from the bottom through an opaque substrate, we demonstrate that our methodology permits the measurement of thermophysical properties (viscosity, surface tension, and diffusivity) of complex NF and biofluids. Second, in a top illumination configuration, we show a precise characterization of NF by quantitively isolating the competing forces, taking advantage of the different time scales of these forces. Third, we show the measurement of NF confined in a metal cavity, in which the transient thermoelastic deformation of the metal surface provides the properties of the NF as well as thermo-mechanical properties of the metal. Our results reveal how the dissipative nature of the heatwave allows us to investigate thick-film dynamics in the thin-film regime, thereby suggesting a general approach for precision measurements of complex NFs, biofluids, and optofluidic devices.

摘要

激光诱导的液体表面热毛细变形已成为精确表征纯流体热物理性质的一种很有前景的工具。然而,对于纳米流体(NF)和软生物流体系统而言,存在一些挑战,因为激光的直接相互作用会在加热、动量和散射力之间产生有趣的相互作用,甚至可能损坏软生物流体。在此,我们报告了一种通用的、基于泵浦 - 探测的、快速且非接触的干涉测量技术,该技术能够在不使用锁相或调制光束的情况下,在低于热极限的厚膜区域以约1纳米的精度和薄膜区域以150皮米的精度解析复杂流体的界面动力学。我们在三种完全不同的配置中表征了复杂纳米流体的热物理性质。首先,当通过不透明基板从底部加热纳米流体时,我们证明我们的方法允许测量复杂纳米流体和生物流体的热物理性质(粘度、表面张力和扩散率)。其次,在顶部照明配置中,我们利用这些力的不同时间尺度,通过定量分离竞争力来精确表征纳米流体。第三,我们展示了对限制在金属腔中的纳米流体的测量,其中金属表面的瞬态热弹性变形提供了纳米流体的性质以及金属的热机械性质。我们的结果揭示了热波的耗散性质如何使我们能够在薄膜区域研究厚膜动力学,从而为复杂纳米流体、生物流体和光流体器件的精确测量提出了一种通用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd41/9051125/c4e6e67b3117/41377_2022_796_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验