文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

治疗性单克隆抗体的分子成像研究进展

Recent progress in the molecular imaging of therapeutic monoclonal antibodies.

作者信息

He Kaifeng, Zeng Su, Qian Linghui

机构信息

Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

出版信息

J Pharm Anal. 2020 Oct;10(5):397-413. doi: 10.1016/j.jpha.2020.07.006. Epub 2020 Aug 8.


DOI:10.1016/j.jpha.2020.07.006
PMID:33133724
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7591813/
Abstract

Therapeutic monoclonal antibodies have become one of the central components of the healthcare system and continuous efforts are made to bring innovative antibody therapeutics to patients in need. It is equally critical to acquire sufficient knowledge of their molecular structure and biological functions to ensure the efficacy and safety by incorporating new detection approaches since new challenges like individual differences and resistance are presented. Conventional techniques for determining antibody disposition including plasma drug concentration measurements using LC-MS or ELISA, and tissue distribution using immunohistochemistry and immunofluorescence are now complemented with molecular imaging modalities like positron emission tomography and near-infrared fluorescence imaging to obtain more dynamic information, while methods for characterization of antibody's interaction with the target antigen as well as visualization of its cellular and intercellular behavior are still under development. Recent progress in detecting therapeutic antibodies, in particular, the development of methods suitable for illustrating the molecular dynamics, is described here.

摘要

治疗性单克隆抗体已成为医疗保健系统的核心组成部分之一,人们不断努力将创新的抗体疗法带给有需要的患者。由于出现了个体差异和耐药性等新挑战,获取足够的关于其分子结构和生物学功能的知识,通过纳入新的检测方法来确保疗效和安全性同样至关重要。用于确定抗体处置的传统技术,包括使用液相色谱 - 质谱或酶联免疫吸附测定法测量血浆药物浓度,以及使用免疫组织化学和免疫荧光法进行组织分布研究,现在正通过正电子发射断层扫描和近红外荧光成像等分子成像方式得到补充,以获得更动态的信息,而用于表征抗体与靶抗原相互作用以及可视化其细胞和细胞间行为的方法仍在开发中。本文描述了检测治疗性抗体的最新进展,特别是适用于阐明分子动力学的方法的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/57e10c9015cb/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/61ef3f3de402/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/62639b54b759/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/003406454b95/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/766b679424df/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/34551868c7f8/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/066d36ed578a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/ce19ee2bd3cb/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/217a2562b89a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/5346b6bce2b0/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/6601707d412c/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/58df743289de/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/a4ef72f99023/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/5d5ac3073be2/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/3b65882a63d9/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/f21ca466e91d/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/0b2170aacb32/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/1dc63c4a66c3/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/333ef5307bd3/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/80c30a07ad0b/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/9802990c1648/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/57e10c9015cb/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/61ef3f3de402/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/62639b54b759/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/003406454b95/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/766b679424df/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/34551868c7f8/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/066d36ed578a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/ce19ee2bd3cb/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/217a2562b89a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/5346b6bce2b0/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/6601707d412c/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/58df743289de/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/a4ef72f99023/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/5d5ac3073be2/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/3b65882a63d9/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/f21ca466e91d/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/0b2170aacb32/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/1dc63c4a66c3/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/333ef5307bd3/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/80c30a07ad0b/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/9802990c1648/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ca/7591813/57e10c9015cb/gr20.jpg

相似文献

[1]
Recent progress in the molecular imaging of therapeutic monoclonal antibodies.

J Pharm Anal. 2020-10

[2]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[3]
Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

Hum Vaccin Immunother. 2015

[4]
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.

Hell J Nucl Med. 2019

[5]
In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity

2009

[6]
Attribution of the discrepancy between ELISA and LC-MS/MS assay results of a PEGylated scaffold protein in post-dose monkey plasma samples due to the presence of anti-drug antibodies.

Anal Bioanal Chem. 2011-12-1

[7]
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].

Zhonghua Jie He He Hu Xi Za Zhi. 2024-2-12

[8]
Molecular Imaging of Pancreatic Cancer with Antibodies.

Mol Pharm. 2016-1-4

[9]
Improved decision making for prioritizing tumor targeting antibodies in human xenografts: Utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule.

MAbs. 2017-1

[10]
Tracking Antibody Distribution with Near-Infrared Fluorescent Dyes: Impact of Dye Structure and Degree of Labeling on Plasma Clearance.

Mol Pharm. 2017-5-1

引用本文的文献

[1]
Brain-penetrating peptide and antibody radioligands for proof-of-concept PET imaging of fibrin in Alzheimer's disease.

EJNMMI Radiopharm Chem. 2025-9-8

[2]
Peptide-based immuno-PET/CT monitoring of dynamic PD-L1 expression during glioblastoma radiotherapy.

J Pharm Anal. 2025-3

[3]
Rapid discovery and evolution of nanosensors containing fluorogenic amino acids.

Nat Commun. 2024-9-5

[4]
Inspired by novel radiopharmaceuticals: Rush hour of nuclear medicine.

Chin J Cancer Res. 2023-10-30

[5]
I-labeled anti-CD147 antibody for noninvasive detection of CD147-positive pan-cancers: construction and preclinical studies.

Acta Pharmacol Sin. 2024-2

[6]
Preclinical evaluation of EpCAM-binding designed ankyrin repeat proteins (DARPins) as targeting moieties for bimodal near-infrared fluorescence and photoacoustic imaging of cancer.

Eur J Nucl Med Mol Imaging. 2024-7

[7]
Pretargeted imaging beyond the blood-brain barrier.

RSC Med Chem. 2022-12-2

[8]
Pretargeted Imaging beyond the Blood-Brain Barrier-Utopia or Feasible?

Pharmaceuticals (Basel). 2022-9-27

[9]
Mixed-dimensional multi-scale poroelastic modeling of adipose tissue for subcutaneous injection.

Biomech Model Mechanobiol. 2022-12

[10]
Real-time imaging of cell-surface proteins with antibody-based fluorogenic probes.

Chem Sci. 2021-9-16

本文引用的文献

[1]
Evaluating the efficacy of the anticancer drug cetuximab by atomic force microscopy.

RSC Adv. 2018-6-13

[2]
Comprehensive review of targeted therapy for colorectal cancer.

Signal Transduct Target Ther. 2020-3-20

[3]
Comparing different domains of analysis for the characterisation of N-glycans on monoclonal antibodies.

J Pharm Anal. 2020-2

[4]
The Influence of Glycans-Specific Bioconjugation on the FcγRI Binding and Performance of Zr-DFO-Pertuzumab.

Theranostics. 2020

[5]
Monoclonal antibody-based molecular imaging strategies and theranostic opportunities.

Theranostics. 2020

[6]
Antibodies to watch in 2020.

MAbs. 2020

[7]
Competition-Based Universal Photonic Crystal Biosensors by Using Antibody-Antigen Interaction.

J Am Chem Soc. 2020-1-8

[8]
Immuno-PET imaging for non-invasive assessment of cetuximab accumulation in non-small cell lung cancer.

BMC Cancer. 2019-10-24

[9]
Responsive Antibody Conjugates Enable Quantitative Determination of Intracellular Bond Degradation Rate.

Cell Chem Biol. 2019-10-8

[10]
Precise Molecular Design for High-Performance Luminogens with Aggregation-Induced Emission.

Adv Mater. 2019-10-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索