Suppr超能文献

不等式约束与鲁棒三维人脸模型拟合

Inequality-Constrained and Robust 3D Face Model Fitting.

作者信息

Sariyanidi Evangelos, Zampella Casey J, Schultz Robert T, Tunc Birkan

机构信息

Center for Autism Research, Children's Hospital of Philadelphia.

University of Pennsylvania.

出版信息

Comput Vis ECCV. 2020;12354:433-449.

Abstract

Fitting 3D morphable models (3DMMs) on faces is a well-studied problem, motivated by various industrial and research applications. 3DMMs express a 3D facial shape as a linear sum of basis functions. The resulting shape, however, is a plausible face only when the basis coefficients take values within limited intervals. Methods based on unconstrained optimization address this issue with a weighted penalty on coefficients; however, determining the weight of this penalty is difficult, and the existence of a single weight that works universally is questionable. We propose a new formulation that does not require the tuning of any weight parameter. Specifically, we formulate 3DMM fitting as an inequality-constrained optimization problem, where the primary constraint is that basis coefficients should not exceed the interval that is learned when the 3DMM is constructed. We employ additional constraints to exploit sparse landmark detectors, by forcing the facial shape to be within the error bounds of a reliable detector. To enable operation "in-the-wild", we use a robust objective function, namely Gradient Correlation. Our approach performs comparably with deep learning (DL) methods on "in-the-wild" data that have inexact ground truth, and better than DL methods on more controlled data with exact ground truth. Since our formulation does not require any learning, it enjoys a versatility that allows it to operate with multiple frames of arbitrary sizes. This study's results encourage further research on 3DMM fitting with inequality-constrained optimization methods, which have been unexplored compared to unconstrained methods.

摘要

在面部拟合3D可变形模型(3DMM)是一个经过充分研究的问题,受到各种工业和研究应用的推动。3DMM将3D面部形状表示为基函数的线性和。然而,只有当基系数在有限区间内取值时,得到的形状才是一个合理的面部。基于无约束优化的方法通过对系数施加加权惩罚来解决这个问题;然而,确定这种惩罚的权重很困难,而且存在一个普遍适用的单一权重也值得怀疑。我们提出了一种新的公式,该公式不需要调整任何权重参数。具体来说,我们将3DMM拟合公式化为一个不等式约束优化问题,其中主要约束是基系数不应超过在构建3DMM时所学习的区间。我们采用额外的约束来利用稀疏地标检测器,通过强制面部形状在可靠检测器的误差范围内。为了实现“在自然环境中”的操作,我们使用了一个鲁棒的目标函数,即梯度相关性。我们的方法在具有不精确地面真值的“在自然环境中”的数据上与深度学习(DL)方法表现相当,并且在具有精确地面真值的更受控数据上比DL方法表现更好。由于我们的公式不需要任何学习,它具有通用性,允许它在任意大小的多帧上运行。这项研究的结果鼓励进一步研究使用不等式约束优化方法进行3DMM拟合,与无约束方法相比,这些方法尚未得到探索。

相似文献

2
Inequality-Constrained 3D Morphable Face Model Fitting.不等式约束的三维可变形人脸模型拟合
IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):1305-1318. doi: 10.1109/TPAMI.2023.3334948. Epub 2024 Jan 8.
3
On Learning 3D Face Morphable Model from In-the-Wild Images.从自然图像中学习3D人脸可变形模型
IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):157-171. doi: 10.1109/TPAMI.2019.2927975. Epub 2020 Dec 4.
4
3D Reconstruction of "In-the-Wild" Faces in Images and Videos.“野外”人脸的图像和视频的三维重建。
IEEE Trans Pattern Anal Mach Intell. 2018 Nov;40(11):2638-2652. doi: 10.1109/TPAMI.2018.2832138. Epub 2018 May 15.
8
Beyond 3DMM: Learning to Capture High-Fidelity 3D Face Shape.超越三维形态模型:学习捕捉高保真三维面部形状
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1442-1457. doi: 10.1109/TPAMI.2022.3164131. Epub 2023 Jan 6.
9
HeadFusion: 360 Head Pose Tracking Combining 3D Morphable Model and 3D Reconstruction.HeadFusion:结合 3D 可变形模型和 3D 重建的 360 度头部姿势跟踪。
IEEE Trans Pattern Anal Mach Intell. 2018 Nov;40(11):2653-2667. doi: 10.1109/TPAMI.2018.2841403. Epub 2018 May 29.
10
Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face Reconstruction.Fast-GANFIT:用于高保真 3D 人脸重建的生成对抗网络。
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):4879-4893. doi: 10.1109/TPAMI.2021.3084524. Epub 2022 Aug 4.

引用本文的文献

3
Meta-evaluation for 3D Face Reconstruction Via Synthetic Data.基于合成数据的3D面部重建的元评估
IEEE Int Conf Biom Theory Appl Syst. 2023 Sep;2023. doi: 10.1109/ijcb57857.2023.10448898.
4
Predicting Autism from Head Movement Patterns during Naturalistic Social Interactions.基于自然社交互动中头部运动模式预测自闭症
Proc 2023 7th Int Conf Med Health Inform ICMHI 2023 (2023). 2023 May;2023:55-60. doi: 10.1145/3608298.3608309. Epub 2023 Oct 18.
6
Inequality-Constrained 3D Morphable Face Model Fitting.不等式约束的三维可变形人脸模型拟合
IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):1305-1318. doi: 10.1109/TPAMI.2023.3334948. Epub 2024 Jan 8.
7
Head Movement Patterns during Face-to-Face Conversations Vary with Age.面对面交谈时的头部运动模式随年龄而异。
ICMI22 Companion (2022). 2022 Nov;2022:185-195. doi: 10.1145/3536220.3563366. Epub 2022 Nov 7.

本文引用的文献

1
Side Information for Face Completion: A Robust PCA Approach.人脸补全的辅助信息:一种鲁棒 PCA 方法。
IEEE Trans Pattern Anal Mach Intell. 2019 Oct;41(10):2349-2364. doi: 10.1109/TPAMI.2019.2902556. Epub 2019 Mar 4.
3
3D Reconstruction of "In-the-Wild" Faces in Images and Videos.“野外”人脸的图像和视频的三维重建。
IEEE Trans Pattern Anal Mach Intell. 2018 Nov;40(11):2638-2652. doi: 10.1109/TPAMI.2018.2832138. Epub 2018 May 15.
4
Face Alignment in Full Pose Range: A 3D Total Solution.全姿态范围内的面部对齐:一种三维整体解决方案。
IEEE Trans Pattern Anal Mach Intell. 2019 Jan;41(1):78-92. doi: 10.1109/TPAMI.2017.2778152. Epub 2017 Nov 28.
5
Subpixel registration with gradient correlation.基于梯度相关的子像素配准。
IEEE Trans Image Process. 2011 Jun;20(6):1761-7. doi: 10.1109/TIP.2010.2095867. Epub 2010 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验