Suppr超能文献

超越三维形态模型:学习捕捉高保真三维面部形状

Beyond 3DMM: Learning to Capture High-Fidelity 3D Face Shape.

作者信息

Zhu Xiangyu, Yu Chang, Huang Di, Lei Zhen, Wang Hao, Li Stan Z

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1442-1457. doi: 10.1109/TPAMI.2022.3164131. Epub 2023 Jan 6.

Abstract

3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori. However, previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry, which is attributed to insufficient ground-truth 3D shapes, unreliable training strategies and limited representation power of 3DMM. To alleviate this issue, this paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person. Specifically, given a 2D image as the input, we virtually render the image in several calibrated views to normalize pose variations while preserving the original image geometry. A many-to-one hourglass network serves as the encode-decoder to fuse multiview features and generate vertex displacements as the fine-grained geometry. Besides, the neural network is trained by directly optimizing the visual effect, where two 3D shapes are compared by measuring the similarity between the multiview images rendered from the shapes. Finally, we propose to generate the ground-truth 3D shapes by registering RGB-D images followed by pose and shape augmentation, providing sufficient data for network training. Experiments on several challenging protocols demonstrate the superior reconstruction accuracy of our proposal on the face shape.

摘要

由于其强大的三维先验性,三维可变形模型(3DMM)拟合在面部分析中得到了广泛应用。然而,由于细粒度几何信息的丢失,先前重建的三维面部在视觉逼真度上有所下降,这归因于缺乏足够的真实三维形状、不可靠的训练策略以及3DMM有限的表示能力。为了缓解这一问题,本文提出了一种完整的解决方案来捕捉个性化形状,使重建的形状与对应的人看起来完全相同。具体来说,给定一张二维图像作为输入,我们在多个校准视图中虚拟渲染该图像,以归一化姿态变化,同时保留原始图像的几何信息。一个多对一的沙漏网络作为编解码器,融合多视图特征并生成顶点位移作为细粒度几何信息。此外,通过直接优化视觉效果来训练神经网络,通过测量从形状渲染的多视图图像之间的相似度来比较两个三维形状。最后,我们建议通过对齐RGB-D图像并进行姿态和形状增强来生成真实的三维形状,为网络训练提供足够的数据。在几个具有挑战性的协议上进行的实验证明了我们的方法在面部形状重建精度上的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验