Sariyanidi Evangelos, Zampella Casey J, Schultz Robert T, Tunc Birkan
IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):1305-1318. doi: 10.1109/TPAMI.2023.3334948. Epub 2024 Jan 8.
3D morphable model (3DMM) fitting on 2D data is traditionally done via unconstrained optimization with regularization terms to ensure that the result is a plausible face shape and is consistent with a set of 2D landmarks. This paper presents inequality-constrained 3DMM fitting as the first alternative to regularization in optimization-based 3DMM fitting. Inequality constraints on the 3DMM's shape coefficients ensure face-like shapes without modifying the objective function for smoothness, thus allowing for more flexibility to capture person-specific shape details. Moreover, inequality constraints on landmarks increase robustness in a way that does not require per-image tuning. We show that the proposed method stands out with its ability to estimate person-specific face shapes by jointly fitting a 3DMM to multiple frames of a person. Further, when used with a robust objective function, namely gradient correlation, the method can work "in-the-wild" even with a 3DMM constructed from controlled data. Lastly, we show how to use the log-barrier method to efficiently implement the method. To our knowledge, we present the first 3DMM fitting framework that requires no learning yet is accurate, robust, and efficient. The absence of learning enables a generic solution that allows flexibility in the input image size, interchangeable morphable models, and incorporation of camera matrix.
传统上,将3D可变形模型(3DMM)拟合到二维数据是通过带有正则化项的无约束优化来完成的,以确保结果是一个合理的面部形状并且与一组二维地标点一致。本文提出了不等式约束的3DMM拟合方法,作为基于优化的3DMM拟合中正则化的首个替代方法。对3DMM形状系数的不等式约束可确保面部形状,而无需修改用于平滑度的目标函数,从而允许更大的灵活性来捕捉特定于个人的形状细节。此外,对地标点的不等式约束以一种无需针对每个图像进行调整的方式提高了鲁棒性。我们表明,所提出的方法通过将3DMM联合拟合到一个人的多帧图像来估计特定于个人的面部形状的能力而脱颖而出。此外,当与一种强大的目标函数(即梯度相关性)一起使用时,该方法即使使用由受控数据构建的3DMM也能在“真实场景”中工作。最后,我们展示了如何使用对数障碍法来有效地实现该方法。据我们所知,我们提出了第一个无需学习但准确、鲁棒且高效的3DMM拟合框架。无需学习使得能够有一个通用的解决方案,该方案允许在输入图像大小、可互换的可变形模型以及相机矩阵的合并方面具有灵活性。