Suppr超能文献

不等式约束的三维可变形人脸模型拟合

Inequality-Constrained 3D Morphable Face Model Fitting.

作者信息

Sariyanidi Evangelos, Zampella Casey J, Schultz Robert T, Tunc Birkan

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):1305-1318. doi: 10.1109/TPAMI.2023.3334948. Epub 2024 Jan 8.

Abstract

3D morphable model (3DMM) fitting on 2D data is traditionally done via unconstrained optimization with regularization terms to ensure that the result is a plausible face shape and is consistent with a set of 2D landmarks. This paper presents inequality-constrained 3DMM fitting as the first alternative to regularization in optimization-based 3DMM fitting. Inequality constraints on the 3DMM's shape coefficients ensure face-like shapes without modifying the objective function for smoothness, thus allowing for more flexibility to capture person-specific shape details. Moreover, inequality constraints on landmarks increase robustness in a way that does not require per-image tuning. We show that the proposed method stands out with its ability to estimate person-specific face shapes by jointly fitting a 3DMM to multiple frames of a person. Further, when used with a robust objective function, namely gradient correlation, the method can work "in-the-wild" even with a 3DMM constructed from controlled data. Lastly, we show how to use the log-barrier method to efficiently implement the method. To our knowledge, we present the first 3DMM fitting framework that requires no learning yet is accurate, robust, and efficient. The absence of learning enables a generic solution that allows flexibility in the input image size, interchangeable morphable models, and incorporation of camera matrix.

摘要

传统上,将3D可变形模型(3DMM)拟合到二维数据是通过带有正则化项的无约束优化来完成的,以确保结果是一个合理的面部形状并且与一组二维地标点一致。本文提出了不等式约束的3DMM拟合方法,作为基于优化的3DMM拟合中正则化的首个替代方法。对3DMM形状系数的不等式约束可确保面部形状,而无需修改用于平滑度的目标函数,从而允许更大的灵活性来捕捉特定于个人的形状细节。此外,对地标点的不等式约束以一种无需针对每个图像进行调整的方式提高了鲁棒性。我们表明,所提出的方法通过将3DMM联合拟合到一个人的多帧图像来估计特定于个人的面部形状的能力而脱颖而出。此外,当与一种强大的目标函数(即梯度相关性)一起使用时,该方法即使使用由受控数据构建的3DMM也能在“真实场景”中工作。最后,我们展示了如何使用对数障碍法来有效地实现该方法。据我们所知,我们提出了第一个无需学习但准确、鲁棒且高效的3DMM拟合框架。无需学习使得能够有一个通用的解决方案,该方案允许在输入图像大小、可互换的可变形模型以及相机矩阵的合并方面具有灵活性。

相似文献

1
Inequality-Constrained 3D Morphable Face Model Fitting.不等式约束的三维可变形人脸模型拟合
IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):1305-1318. doi: 10.1109/TPAMI.2023.3334948. Epub 2024 Jan 8.
3
On Learning 3D Face Morphable Model from In-the-Wild Images.从自然图像中学习3D人脸可变形模型
IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):157-171. doi: 10.1109/TPAMI.2019.2927975. Epub 2020 Dec 4.
5
Beyond 3DMM: Learning to Capture High-Fidelity 3D Face Shape.超越三维形态模型:学习捕捉高保真三维面部形状
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1442-1457. doi: 10.1109/TPAMI.2022.3164131. Epub 2023 Jan 6.
6
Large Scale 3D Morphable Models.大规模三维可变形模型
Int J Comput Vis. 2018;126(2):233-254. doi: 10.1007/s11263-017-1009-7. Epub 2017 Apr 8.
8
HeadFusion: 360 Head Pose Tracking Combining 3D Morphable Model and 3D Reconstruction.HeadFusion:结合 3D 可变形模型和 3D 重建的 360 度头部姿势跟踪。
IEEE Trans Pattern Anal Mach Intell. 2018 Nov;40(11):2653-2667. doi: 10.1109/TPAMI.2018.2841403. Epub 2018 May 29.

引用本文的文献

3
Detecting Autism from Head Movements using Kinesics.运用身势学通过头部动作检测自闭症。
Proc ACM Int Conf Multimodal Interact. 2024 Nov;2024:350-354. doi: 10.1145/3678957.3685711. Epub 2024 Nov 4.
4
Meta-evaluation for 3D Face Reconstruction Via Synthetic Data.基于合成数据的3D面部重建的元评估
IEEE Int Conf Biom Theory Appl Syst. 2023 Sep;2023. doi: 10.1109/ijcb57857.2023.10448898.

本文引用的文献

1
Meta-evaluation for 3D Face Reconstruction Via Synthetic Data.基于合成数据的3D面部重建的元评估
IEEE Int Conf Biom Theory Appl Syst. 2023 Sep;2023. doi: 10.1109/ijcb57857.2023.10448898.
3
Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face Reconstruction.Fast-GANFIT:用于高保真 3D 人脸重建的生成对抗网络。
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):4879-4893. doi: 10.1109/TPAMI.2021.3084524. Epub 2022 Aug 4.
5
Can Facial Pose and Expression Be Separated with Weak Perspective Camera?使用弱透视相机能否分离面部姿势和表情?
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020 Jun;2020:7171-7180. doi: 10.1109/cvpr42600.2020.00720. Epub 2020 Aug 5.
6
On Learning 3D Face Morphable Model from In-the-Wild Images.从自然图像中学习3D人脸可变形模型
IEEE Trans Pattern Anal Mach Intell. 2021 Jan;43(1):157-171. doi: 10.1109/TPAMI.2019.2927975. Epub 2020 Dec 4.
8
3D Reconstruction of "In-the-Wild" Faces in Images and Videos.“野外”人脸的图像和视频的三维重建。
IEEE Trans Pattern Anal Mach Intell. 2018 Nov;40(11):2638-2652. doi: 10.1109/TPAMI.2018.2832138. Epub 2018 May 15.
9
Face Alignment in Full Pose Range: A 3D Total Solution.全姿态范围内的面部对齐:一种三维整体解决方案。
IEEE Trans Pattern Anal Mach Intell. 2019 Jan;41(1):78-92. doi: 10.1109/TPAMI.2017.2778152. Epub 2017 Nov 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验