Suppr超能文献

基于卷积神经网络的实时密集人脸重建与逆渲染逼真人脸图像

CNN-Based Real-Time Dense Face Reconstruction with Inverse-Rendered Photo-Realistic Face Images.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Jun;41(6):1294-1307. doi: 10.1109/TPAMI.2018.2837742. Epub 2018 May 17.

Abstract

With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method. Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore, we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct a large number of video-type adjacent frame pairs by simulating the distribution of real video data.11.All these coarse-scale and fine-scale photo-realistic face image datasets can be downloaded from https://github.com/Juyong/3DFace. With these nicely constructed datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.

摘要

随着卷积神经网络(CNN)的强大功能,基于CNN的面部重建最近在从二维面部图像重建详细的面部形状方面表现出了有前景的性能。基于CNN的方法的成功依赖于大量的标记数据。目前最先进的方法使用粗糙的可变形面部模型来合成此类数据,然而该模型难以生成面部的详细逼真图像(带有皱纹)。本文提出了一种新颖的面部数据生成方法。具体来说,我们基于逆渲染生成大量具有不同属性的逼真面部图像。此外,我们通过将不同尺度的细节从一幅图像转移到另一幅图像来构建一个精细的面部图像数据集。我们还通过模拟真实视频数据的分布构建了大量视频类型的相邻帧对。所有这些粗尺度和细尺度的逼真面部图像数据集都可以从https://github.com/Juyong/3DFace下载。有了这些精心构建的数据集,我们提出了一个由三个卷积网络组成的从粗到细的学习框架。这些网络经过训练,可从单目视频以及单幅图像中进行实时详细的3D面部重建。大量实验结果表明,与目前最先进的方法相比,我们的框架可以产生高质量的重建结果,但计算时间要少得多。此外,由于数据的多样性,我们的方法对姿态、表情和光照具有鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验