Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA.
Cardiovasc Res. 2021 May 25;117(6):1450-1488. doi: 10.1093/cvr/cvaa324.
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
心肌纤维化是心肌间质通过细胞外基质蛋白沉积而扩张的一种常见病理生理伴发改变,存在于多种不同的心肌疾病中。纤维化可能反映了修复或适应性不良过程的激活。活化的成纤维细胞和肌成纤维细胞是心肌纤维化的核心细胞效应物,是基质蛋白的主要来源。在应激条件下,免疫细胞、血管细胞和心肌细胞也可能获得纤维生成表型,激活成纤维细胞群体。纤维生成生长因子(如转化生长因子-β和血小板衍生生长因子)、细胞因子(包括肿瘤坏死因子-α、白细胞介素-1、白细胞介素-6、白细胞介素-10 和白细胞介素-4)和神经激素途径通过与表面受体结合并激活下游信号转导级联反应,触发纤维生成信号转导级联反应。此外,基质细胞大分子在重塑心肌中沉积,并调节基质组装,同时调节信号转导级联反应和蛋白酶或生长因子活性。心肌成纤维细胞还可以通过机械敏感受体、离子通道和整合素感知机械应激,激活细胞内纤维生成级联反应,从而在压力超负荷下促进纤维化。尽管成纤维细胞样细胞的亚群在修复和间质/血管周围纤维化中可能发挥重要的保护作用,但最终纤维化改变会扰乱收缩和舒张功能,并可能在心律失常的发病机制中发挥重要作用。本文综述了各种心肌疾病(包括心肌梗死、射血分数降低或保留的心衰、遗传性心肌病和糖尿病性心脏病)中心肌纤维化发病机制涉及的分子机制。为心肌疾病患者开发针对纤维化的治疗方法不仅需要了解心肌成纤维细胞的功能多样性和纤维化重塑的分子基础,还需要了解与纤维化相关的心肌疾病的病理生理异质性。