Natarajan Niranjana, Xiao Hanxi, Haque Shagufta, Cundiff Mary D, Hara Mika, Sriram Varsha, Das Jishnu, Dutta Partha
Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213.
Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine.
medRxiv. 2025 Aug 24:2025.08.18.25333841. doi: 10.1101/2025.08.18.25333841.
Myocardial infarction (MI) often leads to ischemic cardiomyopathy, which is characterized by extensive cardiac remodeling and pathological fibrosis accompanied by inflammatory cell accumulation. Although inflammatory responses elicited by cardiac macrophages are instrumental in post-MI cardiac remodeling, macrophage microniche-mediated fibroblast activation in MI are not understood. Analyses of the spatial transcriptomics data of the hearts of patients with ischemic cardiomyopathy and a history of MI using a novel workflow combining Significant Latent Factor Interaction Discovery (SLIDE), which is an interpretable machine learning approach recently developed by us, regulatory network inference, and in-silico perturbations unveiled unique context-specific cellular programs and corresponding transcription factors driving these programs (that would have been missed by traditional analyses) in macrophages, and resting and activated cardiac fibroblasts. More nuanced analyses to examine the microniches comprising these cells in failed hearts uncovered additional cellular programs reflective of altered paracrine signaling among these cells. Silencing of niche-specific key genes and TFs from these cellular programs in both mouse and human macrophages altered the expression of pro-fibrotic genes. Furthermore, the secretomes from these macrophages suppressed myofibroblast differentiation. Finally, macrophage-specific silencing of , , and and the transcription factors and , which are differentially expressed in macrophage/activated fibroblast niches, using a novel lipidoid nanoparticle approach in mice with MI significantly improved cardiac function and suppressed fibrosis. Our study uncovers novel macrophage niche-mediated fibroblast activation mechanisms and provides a new generalizable framework, coupling interpretable machine learning, regulatory network inference, in-silico perturbations, and and testing.
心肌梗死(MI)常导致缺血性心肌病,其特征为广泛的心脏重塑和病理性纤维化,并伴有炎症细胞积聚。尽管心脏巨噬细胞引发的炎症反应在心肌梗死后的心脏重塑中起重要作用,但心肌梗死中巨噬细胞微环境介导的成纤维细胞激活尚不明确。我们使用一种新颖的工作流程,结合我们最近开发的可解释机器学习方法显著潜在因子相互作用发现(SLIDE)、调控网络推断和计算机模拟扰动,对有心肌梗死病史的缺血性心肌病患者心脏的空间转录组学数据进行分析,揭示了巨噬细胞、静息和激活的心脏成纤维细胞中独特的、特定于上下文的细胞程序以及驱动这些程序的相应转录因子(而这些是传统分析会遗漏的)。对衰竭心脏中包含这些细胞的微环境进行更细致的分析,发现了反映这些细胞间旁分泌信号改变的其他细胞程序。沉默小鼠和人类巨噬细胞中这些细胞程序的特定于微环境的关键基因和转录因子,改变了促纤维化基因的表达。此外,这些巨噬细胞的分泌产物抑制了肌成纤维细胞的分化。最后,在心肌梗死小鼠中,使用一种新型脂质体纳米颗粒方法,对在巨噬细胞/激活的成纤维细胞微环境中差异表达的 、 、 以及转录因子 和 进行巨噬细胞特异性沉默,显著改善了心脏功能并抑制了纤维化。我们的研究揭示了新型巨噬细胞微环境介导的成纤维细胞激活机制,并提供了一个新的可推广框架,将可解释机器学习、调控网络推断、计算机模拟扰动以及基因和转录因子测试相结合。