Suppr超能文献

Cu(I)-裂解多糖单加氧酶的 Kβ X 射线发射光谱:HO 活化的前沿分子轨道的直接观察。

Kβ X-ray Emission Spectroscopy of Cu(I)-Lytic Polysaccharide Monooxygenase: Direct Observation of the Frontier Molecular Orbital for HO Activation.

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, United States.

Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States.

出版信息

J Am Chem Soc. 2023 Jul 26;145(29):16015-16025. doi: 10.1021/jacs.3c04048. Epub 2023 Jul 13.

Abstract

Lytic polysaccharide monooxygenases (LPMOs) catalyze the degradation of recalcitrant carbohydrate polysaccharide substrates. These enzymes are characterized by a mononuclear Cu(I) active site with a three-coordinate T-shaped "His-brace" configuration including the N-terminal histidine and its amine group as ligands. This study explicitly investigates the electronic structure of the d Cu(I) active site in a LPMO using Kβ X-ray emission spectroscopy (XES). The lack of inversion symmetry in the His-brace site enables the 3d/p mixing required for intensity in the Kβ valence-to-core (VtC) XES spectrum of Cu(I)-LPMO. These Kβ XES data are correlated to density functional theory (DFT) calculations to define the bonding, and in particular, the frontier molecular orbital (FMO) of the Cu(I) site. These experimentally validated DFT calculations are used to evaluate the reaction coordinate for homolytic cleavage of the HO O-O bond and understand the contribution of this FMO to the low barrier of this reaction and how the geometric and electronic structure of the Cu(I)-LPMO site is activated for rapid reactivity with HO.

摘要

溶细胞多糖单加氧酶(LPMOs)催化难降解碳水化合物多糖底物的降解。这些酶的特征是单核 Cu(I)活性位点,具有三配位 T 形“His-brace”构型,包括 N 端组氨酸及其胺基作为配体。本研究使用 Kβ X 射线发射光谱(XES)明确研究了 LPMO 中 d Cu(I)活性位点的电子结构。His-brace 位点的非反演对称允许 3d/p 混合,这是 Cu(I)-LPMO 的 Kβ 价到核(VtC)XES 光谱中强度所必需的。这些 Kβ XES 数据与密度泛函理论(DFT)计算相关联,以定义键合,特别是 Cu(I)位点的前沿分子轨道(FMO)。这些经过实验验证的 DFT 计算用于评估 HO O-O 键的均裂裂解的反应坐标,理解该 FMO 对该反应低能垒的贡献,以及 Cu(I)-LPMO 位点的几何和电子结构如何被激活以实现与 HO 的快速反应性。

相似文献

2
Kβ X-ray Emission Spectroscopy as a Probe of Cu(I) Sites: Application to the Cu(I) Site in Preprocessed Galactose Oxidase.
Inorg Chem. 2020 Nov 16;59(22):16567-16581. doi: 10.1021/acs.inorgchem.0c02495. Epub 2020 Nov 2.
3
A frontier-orbital view of the initial steps of lytic polysaccharide monooxygenase reactions.
Dalton Trans. 2024 Mar 26;53(13):5796-5807. doi: 10.1039/d3dt04275h.
7
Targeting the reactive intermediate in polysaccharide monooxygenases.
J Biol Inorg Chem. 2017 Oct;22(7):1029-1037. doi: 10.1007/s00775-017-1480-1. Epub 2017 Jul 11.
8
A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2308286120. doi: 10.1073/pnas.2308286120. Epub 2023 Oct 16.
9
The rotamer of the second-sphere histidine in AA9 lytic polysaccharide monooxygenase is pH dependent.
Biophys J. 2024 May 7;123(9):1139-1151. doi: 10.1016/j.bpj.2024.04.002. Epub 2024 Apr 2.
10
Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.
J Biol Chem. 2016 Jun 10;291(24):12838-12850. doi: 10.1074/jbc.M116.722447. Epub 2016 Apr 15.

引用本文的文献

1
Structure-Function Analysis of an Understudied Type of LPMO with Unique Redox Properties and Substrate Specificity.
ACS Catal. 2025 Jun 6;15(12):10601-10617. doi: 10.1021/acscatal.5c03003. eCollection 2025 Jun 20.
2
Coupling experiment and theory to push the state-of-the-art in X-ray spectroscopy.
Nat Rev Chem. 2025 May 30. doi: 10.1038/s41570-025-00718-2.
4
Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex.
Eur J Inorg Chem. 2024 May 22;27(15). doi: 10.1002/ejic.202300774. Epub 2024 Jan 8.
5
The impact of the carbohydrate-binding module on how a lytic polysaccharide monooxygenase modifies cellulose fibers.
Biotechnol Biofuels Bioprod. 2024 Aug 24;17(1):118. doi: 10.1186/s13068-024-02564-8.
7
Mutational dissection of a hole hopping route in a lytic polysaccharide monooxygenase (LPMO).
Nat Commun. 2024 May 10;15(1):3975. doi: 10.1038/s41467-024-48245-w.
8
Accessing metal-specific orbital interactions in C-H activation with resonant inelastic X-ray scattering.
Chem Sci. 2024 Jan 9;15(7):2398-2409. doi: 10.1039/d3sc04388f. eCollection 2024 Feb 14.
9
Assessing the role of redox partners in TthLPMO9G and its mutants: focus on HO production and interaction with cellulose.
Biotechnol Biofuels Bioprod. 2024 Feb 1;17(1):19. doi: 10.1186/s13068-024-02463-y.
10
Mapping the Initial Stages of a Protective Pathway that Enhances Catalytic Turnover by a Lytic Polysaccharide Monooxygenase.
J Am Chem Soc. 2023 Sep 20;145(37):20672-20682. doi: 10.1021/jacs.3c06607. Epub 2023 Sep 9.

本文引用的文献

1
Histidine oxidation in lytic polysaccharide monooxygenase.
J Biol Inorg Chem. 2023 Apr;28(3):317-328. doi: 10.1007/s00775-023-01993-4. Epub 2023 Feb 25.
2
Lytic polysaccharide monooxygenases: enzymes for controlled and site-specific Fenton-like chemistry.
Essays Biochem. 2023 Mar 18;67(3):575-584. doi: 10.1042/EBC20220250.
3
4
Recovery of particulate methane monooxygenase structure and activity in a lipid bilayer.
Science. 2022 Mar 18;375(6586):1287-1291. doi: 10.1126/science.abm3282. Epub 2022 Mar 17.
5
Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes.
Biochemistry. 2021 Nov 30;60(47):3633-3643. doi: 10.1021/acs.biochem.1c00407. Epub 2021 Nov 5.
8
Kβ X-ray Emission Spectroscopy as a Probe of Cu(I) Sites: Application to the Cu(I) Site in Preprocessed Galactose Oxidase.
Inorg Chem. 2020 Nov 16;59(22):16567-16581. doi: 10.1021/acs.inorgchem.0c02495. Epub 2020 Nov 2.
9
Biochemical evidence of both copper chelation and oxygenase activity at the histidine brace.
Sci Rep. 2020 Oct 1;10(1):16369. doi: 10.1038/s41598-020-73266-y.
10
The ORCA quantum chemistry program package.
J Chem Phys. 2020 Jun 14;152(22):224108. doi: 10.1063/5.0004608.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验