Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany; Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.
Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.
Kidney Int. 2021 Apr;99(4):926-939. doi: 10.1016/j.kint.2020.09.030. Epub 2020 Oct 31.
Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m at follow-up among those with eGFRcrea 60 mL/min/1.73m or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
肾小球滤过率估计值(eGFRcrea)的快速下降与严重的临床终点有关。与横截面评估的 eGFRcrea 不同,快速 eGFRcrea 下降的遗传基础在很大程度上尚不清楚。为了帮助定义这一点,我们对来自慢性肾脏病遗传学联盟和英国生物库的 42 项全基因组关联研究进行了荟萃分析,以确定快速 eGFRcrea 下降的遗传位置。使用了两种 eGFRcrea 下降的定义:每年 3 毫升/分钟/1.73 平方米或更多(“Rapid3”;包含 34874 例病例,107090 例对照)和 eGFRcrea 下降 25%或更多,并且 eGFRcrea 在基线时 eGFRcrea 为 60 毫升/分钟/1.73 平方米或更高的患者中 eGFRcrea 下降至 60 毫升/分钟/1.73 平方米或更低(“CKDi25”;包含 19901 例病例,175244 例对照)。在 Rapid3 和/或 CKDi25 中,六个基因座中有七个独立的变异:包含四个基因座的五个变异,具有全基因组意义(接近 UMOD-PDILT(2),PRKAG2,WDR72,OR2S2)和 265 个已知 eGFRcrea 变异中的两个变异(接近 GATM,LARP4B)。所有这些基因座都是 Rapid3 和/或 CKDi25 的新基因座,我们的生物信息学后续工作优先考虑了这些基因座下的变异和基因。OR2S2 基因座是任何 eGFRcrea 特征的新基因座,包括有趣的候选基因。对于五个全基因组显著的主要变异,我们发现它们对血尿素氮或半胱氨酸蛋白酶抑制剂估算的肾小球滤过率的年变化有支持作用,但对 GATM 或 LARP4B 没有影响。与低遗传风险(8-14 个不利等位基因)相比,高遗传风险(0-5 个不利等位基因)的个体患急性肾损伤的风险增加 1.20 倍(95%置信区间为 1.08-1.33)。因此,我们确定的快速肾功能下降基因座可能有助于确定治疗靶点,并确定肾功能持续恶化的机制和个体的风险。