The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands.
The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands.
Radiother Oncol. 2020 Dec;153:97-105. doi: 10.1016/j.radonc.2020.10.016. Epub 2020 Nov 1.
Tumor hypoxia increases resistance to radiotherapy and systemic therapy. Our aim was to develop and validate a disease-agnostic and disease-specific CT (+FDG-PET) based radiomics hypoxia classification signature.
A total of 808 patients with imaging data were included: N = 100 training/N = 183 external validation cases for a disease-agnostic CT hypoxia classification signature, N = 76 training/N = 39 validation cases for the H&N CT signature and N = 62 training/N = 36 validation cases for the Lung CT signature. The primary gross tumor volumes (GTV) were manually defined by experts on CT. In order to dichotomize between hypoxic/well-oxygenated tumors a threshold of 20% was used for the [F]-HX4-derived hypoxic fractions (HF). A random forest (RF)-based machine-learning classifier/regressor was trained to classify patients as hypoxia-positive/ negative based on radiomic features.
A 11 feature "disease-agnostic CT model" reached AUC's of respectively 0.78 (95% confidence interval [CI], 0.62-0.94), 0.82 (95% CI, 0.67-0.96) and 0.78 (95% CI, 0.67-0.89) in three external validation datasets. A "disease-agnostic FDG-PET model" reached an AUC of 0.73 (0.95% CI, 0.49-0.97) in validation by combining 5 features. The highest "lung-specific CT model" reached an AUC of 0.80 (0.95% CI, 0.65-0.95) in validation with 4 CT features, while the "H&N-specific CT model" reached an AUC of 0.84 (0.95% CI, 0.64-1.00) in validation with 15 CT features. A tumor volume-alone model was unable to significantly classify patients as hypoxia-positive/ negative. A significant survival split (P = 0.037) was found between CT-classified hypoxia strata in an external H&N cohort (n = 517), while 117 significant hypoxia gene-CT signature feature associations were found in an external lung cohort (n = 80).
The disease-specific radiomics signatures perform better than the disease agnostic ones. By identifying hypoxic patients our signatures have the potential to enrich interventional hypoxia-targeting trials.
肿瘤缺氧会增加放疗和全身治疗的耐药性。我们的目的是开发和验证一种与疾病无关和与疾病相关的 CT(+FDG-PET)的放射组学缺氧分类特征。
共纳入 808 例有影像学数据的患者:N=100 例用于训练/外部验证病例(N=183)的与疾病无关的 CT 缺氧分类特征,N=76 例用于训练/外部验证病例(N=39)的头颈部 CT 特征,N=62 例用于训练/外部验证病例(N=36)的肺部 CT 特征。主要的大体肿瘤体积(GTV)由专家在 CT 上手动定义。为了在缺氧/富氧肿瘤之间进行二分,使用[F]-HX4 衍生的缺氧分数(HF)的 20%作为阈值。基于随机森林(RF)的机器学习分类器/回归器被训练用于根据放射组学特征将患者分类为缺氧阳性/阴性。
一个 11 个特征的“与疾病无关的 CT 模型”在三个外部验证数据集的 AUC 分别为 0.78(95%置信区间[CI],0.62-0.94)、0.82(95%CI,0.67-0.96)和 0.78(95%CI,0.67-0.89)。一个“与疾病无关的 FDG-PET 模型”在结合 5 个特征的验证中达到 AUC 为 0.73(95%CI,0.49-0.97)。最高的“肺部特异性 CT 模型”在 4 个 CT 特征的验证中达到 AUC 为 0.80(95%CI,0.65-0.95),而“头颈部特异性 CT 模型”在 15 个 CT 特征的验证中达到 AUC 为 0.84(95%CI,0.64-1.00)。一个仅基于肿瘤体积的模型无法显著将患者分类为缺氧阳性/阴性。在一个外部头颈部队列(n=517)中,CT 分类的缺氧分层之间发现了显著的生存差异(P=0.037),而在一个外部肺部队列(n=80)中发现了 117 个与缺氧基因 CT 特征相关的显著相关性。
与疾病无关的放射组学特征比与疾病相关的特征表现更好。通过识别缺氧患者,我们的特征具有富集介入性缺氧靶向试验的潜力。