Suppr超能文献

定量成像(影像组学)和人工智能在精准肿瘤学中的新兴作用。

Emerging role of quantitative imaging (radiomics) and artificial intelligence in precision oncology.

作者信息

Jha Ashish Kumar, Mithun Sneha, Sherkhane Umeshkumar B, Dwivedi Pooj, Puts Senders, Osong Biche, Traverso Alberto, Purandare Nilendu, Wee Leonard, Rangarajan Venkatesh, Dekker Andre

机构信息

Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, 6200 Maastricht, The Netherlands.

Department of Nuclear Medicine, Tata Memorial Hospital, Mumbai 400012, Maharashtra, India.

出版信息

Explor Target Antitumor Ther. 2023;4(4):569-582. doi: 10.37349/etat.2023.00153. Epub 2023 Aug 24.

Abstract

Cancer is a fatal disease and the second most cause of death worldwide. Treatment of cancer is a complex process and requires a multi-modality-based approach. Cancer detection and treatment starts with screening/diagnosis and continues till the patient is alive. Screening/diagnosis of the disease is the beginning of cancer management and continued with the staging of the disease, planning and delivery of treatment, treatment monitoring, and ongoing monitoring and follow-up. Imaging plays an important role in all stages of cancer management. Conventional oncology practice considers that all patients are similar in a disease type, whereas biomarkers subgroup the patients in a disease type which leads to the development of precision oncology. The utilization of the radiomic process has facilitated the advancement of diverse imaging biomarkers that find application in precision oncology. The role of imaging biomarkers and artificial intelligence (AI) in oncology has been investigated by many researchers in the past. The existing literature is suggestive of the increasing role of imaging biomarkers and AI in oncology. However, the stability of radiomic features has also been questioned. The radiomic community has recognized that the instability of radiomic features poses a danger to the global generalization of radiomic-based prediction models. In order to establish radiomic-based imaging biomarkers in oncology, the robustness of radiomic features needs to be established on a priority basis. This is because radiomic models developed in one institution frequently perform poorly in other institutions, most likely due to radiomic feature instability. To generalize radiomic-based prediction models in oncology, a number of initiatives, including Quantitative Imaging Network (QIN), Quantitative Imaging Biomarkers Alliance (QIBA), and Image Biomarker Standardisation Initiative (IBSI), have been launched to stabilize the radiomic features.

摘要

癌症是一种致命疾病,是全球第二大致死原因。癌症治疗是一个复杂的过程,需要基于多模式的方法。癌症的检测和治疗始于筛查/诊断,并持续到患者存活。疾病的筛查/诊断是癌症管理的开始,并延续到疾病分期、治疗计划与实施、治疗监测以及持续监测与随访。影像学在癌症管理的各个阶段都发挥着重要作用。传统肿瘤学实践认为,同一疾病类型的所有患者都是相似的,而生物标志物则将同一疾病类型的患者进行亚组划分,这促成了精准肿瘤学的发展。放射组学方法的应用推动了多种成像生物标志物的发展,这些生物标志物在精准肿瘤学中得到了应用。过去,许多研究人员已经对成像生物标志物和人工智能(AI)在肿瘤学中的作用进行了研究。现有文献表明,成像生物标志物和AI在肿瘤学中的作用日益增加。然而,放射组学特征的稳定性也受到了质疑。放射组学领域已经认识到,放射组学特征的不稳定性对基于放射组学的预测模型的全球推广构成了威胁。为了在肿瘤学中建立基于放射组学的成像生物标志物,需要优先确定放射组学特征的稳健性。这是因为在一个机构开发的放射组学模型在其他机构的表现往往不佳,很可能是由于放射组学特征的不稳定性。为了推广肿瘤学中基于放射组学的预测模型,已经发起了一些倡议,包括定量成像网络(QIN)、定量成像生物标志物联盟(QIBA)和图像生物标志物标准化倡议(IBSI),以稳定放射组学特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0b4/10501896/36e735880e36/etat-04-1002153-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验