MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK.
MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK.
Curr Opin Biotechnol. 2021 Apr;68:72-88. doi: 10.1016/j.copbio.2020.09.014. Epub 2020 Nov 1.
A major question remaining in the field of evolutionary biology is how prokaryotic organisms made the leap to complex eukaryotic life. The prevailing theory depicts the origin of eukaryotic cell complexity as emerging from the symbiosis between an α-proteobacterium, the ancestor of present-day mitochondria, and an archaeal host (endosymbiont theory). A primary contribution of mitochondria to eukaryogenesis has been attributed to the mitochondrial genome, which enabled the successful internalisation of bioenergetic membranes and facilitated remarkable genome expansion. It has also been postulated that a key contribution of the archaeal host during eukaryogenesis was in providing 'archaeal histones' that would enable compaction and regulation of an expanded genome. Yet, how the communication between the host and the symbiont evolved is unclear. Here, we propose an evolutionary concept in which mitochondrial TCA cycle signalling was also a crucial player during eukaryogenesis enabling the dynamic control of an expanded genome via regulation of DNA and histone modifications. Furthermore, we discuss how TCA cycle remodelling is a common evolutionary strategy invoked by eukaryotic organisms to coordinate stress responses and gene expression programmes, with a particular focus on the TCA cycle-derived metabolite itaconate.
在进化生物学领域,一个悬而未决的主要问题是原核生物如何跨越到复杂的真核生物。流行的理论描绘了真核细胞复杂性的起源是来自于α-变形菌(现今线粒体的祖先)和古菌宿主(内共生体理论)之间的共生。线粒体对真核生物发生的主要贡献归因于线粒体基因组,它使生物能量膜的成功内化成为可能,并促进了显著的基因组扩张。还有一种假设认为,古菌宿主在真核生物发生过程中的一个关键贡献是提供“古菌组蛋白”,这将使扩张的基因组能够发生压缩和调控。然而,宿主和共生体之间的交流是如何进化的尚不清楚。在这里,我们提出了一个进化概念,即线粒体三羧酸(TCA)循环信号也是真核生物发生过程中的一个关键因素,通过调节 DNA 和组蛋白修饰来实现对扩张基因组的动态控制。此外,我们还讨论了 TCA 循环重塑是真核生物协调应激反应和基因表达程序的常见进化策略,特别关注 TCA 循环衍生代谢物衣康酸。