Suppr超能文献

三羧酸循环信号转导与真核生物的演化。

TCA cycle signalling and the evolution of eukaryotes.

机构信息

MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK.

MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK.

出版信息

Curr Opin Biotechnol. 2021 Apr;68:72-88. doi: 10.1016/j.copbio.2020.09.014. Epub 2020 Nov 1.

Abstract

A major question remaining in the field of evolutionary biology is how prokaryotic organisms made the leap to complex eukaryotic life. The prevailing theory depicts the origin of eukaryotic cell complexity as emerging from the symbiosis between an α-proteobacterium, the ancestor of present-day mitochondria, and an archaeal host (endosymbiont theory). A primary contribution of mitochondria to eukaryogenesis has been attributed to the mitochondrial genome, which enabled the successful internalisation of bioenergetic membranes and facilitated remarkable genome expansion. It has also been postulated that a key contribution of the archaeal host during eukaryogenesis was in providing 'archaeal histones' that would enable compaction and regulation of an expanded genome. Yet, how the communication between the host and the symbiont evolved is unclear. Here, we propose an evolutionary concept in which mitochondrial TCA cycle signalling was also a crucial player during eukaryogenesis enabling the dynamic control of an expanded genome via regulation of DNA and histone modifications. Furthermore, we discuss how TCA cycle remodelling is a common evolutionary strategy invoked by eukaryotic organisms to coordinate stress responses and gene expression programmes, with a particular focus on the TCA cycle-derived metabolite itaconate.

摘要

在进化生物学领域,一个悬而未决的主要问题是原核生物如何跨越到复杂的真核生物。流行的理论描绘了真核细胞复杂性的起源是来自于α-变形菌(现今线粒体的祖先)和古菌宿主(内共生体理论)之间的共生。线粒体对真核生物发生的主要贡献归因于线粒体基因组,它使生物能量膜的成功内化成为可能,并促进了显著的基因组扩张。还有一种假设认为,古菌宿主在真核生物发生过程中的一个关键贡献是提供“古菌组蛋白”,这将使扩张的基因组能够发生压缩和调控。然而,宿主和共生体之间的交流是如何进化的尚不清楚。在这里,我们提出了一个进化概念,即线粒体三羧酸(TCA)循环信号也是真核生物发生过程中的一个关键因素,通过调节 DNA 和组蛋白修饰来实现对扩张基因组的动态控制。此外,我们还讨论了 TCA 循环重塑是真核生物协调应激反应和基因表达程序的常见进化策略,特别关注 TCA 循环衍生代谢物衣康酸。

相似文献

1
TCA cycle signalling and the evolution of eukaryotes.三羧酸循环信号转导与真核生物的演化。
Curr Opin Biotechnol. 2021 Apr;68:72-88. doi: 10.1016/j.copbio.2020.09.014. Epub 2020 Nov 1.
2
The emerging view on the origin and early evolution of eukaryotic cells.真核细胞起源与早期演化的新观点。
Nature. 2024 Sep;633(8029):295-305. doi: 10.1038/s41586-024-07677-6. Epub 2024 Sep 11.
4
Open Questions on the Origin of Eukaryotes.关于真核生物起源的开放性问题。
Trends Ecol Evol. 2015 Nov;30(11):697-708. doi: 10.1016/j.tree.2015.09.005. Epub 2015 Oct 8.
5
Origin and Early Evolution of the Eukaryotic Cell.真核细胞的起源与早期演化。
Annu Rev Microbiol. 2021 Oct 8;75:631-647. doi: 10.1146/annurev-micro-090817-062213. Epub 2021 Aug 3.
7
The symbiotic origin of the eukaryotic cell.真核细胞的共生起源。
C R Biol. 2023 May 30;346:55-73. doi: 10.5802/crbiol.118.

引用本文的文献

5
Multifaceted mitochondria in innate immunity.固有免疫中具有多方面作用的线粒体。
NPJ Metab Health Dis. 2024;2(1):6. doi: 10.1038/s44324-024-00008-3. Epub 2024 May 27.
8
Mitochondrial Dynamics during Development.发育过程中的线粒体动力学
Newborn (Clarksville). 2023 Jan-Mar;2(1):19-44. doi: 10.5005/jp-journals-11002-0053. Epub 2023 Apr 6.
9
Metabolic compatibility and the rarity of prokaryote endosymbioses.代谢兼容性与原核共生体的稀有性。
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2206527120. doi: 10.1073/pnas.2206527120. Epub 2023 Apr 18.

本文引用的文献

3
How energy flow shapes cell evolution.能量流如何塑造细胞进化。
Curr Biol. 2020 May 18;30(10):R471-R476. doi: 10.1016/j.cub.2020.03.055.
6
Krebs Cycle Reborn in Macrophage Immunometabolism.巨噬细胞免疫代谢中的克雷布斯循环重生。
Annu Rev Immunol. 2020 Apr 26;38:289-313. doi: 10.1146/annurev-immunol-081619-104850. Epub 2020 Jan 27.
7
Isolation of an archaeon at the prokaryote-eukaryote interface.古菌的分离处于原核生物与真核生物的交界处。
Nature. 2020 Jan;577(7791):519-525. doi: 10.1038/s41586-019-1916-6. Epub 2020 Jan 15.
10
Overview on antibacterial metabolites from terrestrial spp.陆生物种抗菌代谢产物概述
Mycology. 2019 Apr 22;10(4):191-209. doi: 10.1080/21501203.2019.1604576. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验