Suppr超能文献

运用贝叶斯建模方法(INLA-SPDE)预测长尾真燕魟(Mobular mobular)的出现情况。

Using a Bayesian modelling approach (INLA-SPDE) to predict the occurrence of the Spinetail Devil Ray (Mobular mobular).

机构信息

AZTI-Tecnalia, Marine Research Division, Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain.

Inter-American Tropical Tuna Commission, Ecosystem and Bycatch Program, La Jolla, San Diego, CA, USA.

出版信息

Sci Rep. 2020 Nov 2;10(1):18822. doi: 10.1038/s41598-020-73879-3.

Abstract

To protect the most vulnerable marine species it is essential to have an understanding of their spatiotemporal distributions. In recent decades, Bayesian statistics have been successfully used to quantify uncertainty surrounding identified areas of interest for bycatch species. However, conventional simulation-based approaches are often computationally intensive. To address this issue, in this study, an alternative Bayesian approach (Integrated Nested Laplace Approximation with Stochastic Partial Differential Equation, INLA-SPDE) is used to predict the occurrence of Mobula mobular species in the eastern Pacific Ocean (EPO). Specifically, a Generalized Additive Model is implemented to analyze data from the Inter-American Tropical Tuna Commission's (IATTC) tropical tuna purse-seine fishery observer bycatch database (2005-2015). The INLA-SPDE approach had the potential to predict both the areas of importance in the EPO, that are already known for this species, and the more marginal hotspots, such as the Gulf of California and the Equatorial area which are not identified using other habitat models. Some drawbacks were identified with the INLA-SPDE database, including the difficulties of dealing with categorical variables and triangulating effectively to analyze spatial data. Despite these challenges, we conclude that INLA approach method is an useful complementary and/or alternative approach to traditional ones when modeling bycatch data to inform accurately management decisions.

摘要

为了保护最易受伤害的海洋物种,了解它们的时空分布至关重要。近几十年来,贝叶斯统计学已成功用于量化副渔获物种关注区域的不确定性。然而,传统的基于模拟的方法通常计算量很大。为了解决这个问题,在这项研究中,采用了一种替代的贝叶斯方法(带随机偏微分方程的整合嵌套拉普拉斯逼近法,INLA-SPDE)来预测 Mobula mobular 物种在东太平洋(EPO)的出现情况。具体来说,实施了广义加性模型来分析来自美洲热带金枪鱼委员会(IATTC)热带金枪鱼围网渔业观察员副渔获数据库(2005-2015 年)的数据。INLA-SPDE 方法有可能预测 EPO 中已知的该物种的重要区域,以及更边缘的热点,如加利福尼亚湾和赤道地区,这些地区无法使用其他栖息地模型识别。在 INLA-SPDE 数据库中发现了一些缺点,包括处理分类变量和有效三角剖分以分析空间数据的困难。尽管存在这些挑战,但我们得出结论,当使用副渔获数据进行建模以准确告知管理决策时,INLA 方法是传统方法的有用补充和/或替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1df/7606447/40061bc8ff08/41598_2020_73879_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验