College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Nat Commun. 2020 Nov 2;11(1):5521. doi: 10.1038/s41467-020-19432-2.
A grand challenge of biological chemical production is the competition between synthetic circuits and host genes for limited cellular resources. Quorum sensing (QS)-based dynamic pathway regulations provide a pathway-independent way to rebalance metabolic flux over the course of the fermentation. Most cases, however, these pathway-independent strategies only have capacity for a single QS circuit functional in one cell. Furthermore, current dynamic regulations mainly provide localized control of metabolic flux. Here, with the aid of engineering synthetic orthogonal quorum-related circuits and global mRNA decay, we report a pathway-independent dynamic resource allocation strategy, which allows us to independently controlling two different phenotypic states to globally redistribute cellular resources toward synthetic circuits. The strategy which could pathway-independently and globally self-regulate two desired cell phenotypes including growth and production phenotypes could totally eliminate the need for human supervision of the entire fermentation.
生物化学生产的一个重大挑战是合成电路与宿主基因之间对有限细胞资源的竞争。基于群体感应(QS)的动态途径调控提供了一种独立于途径的方法,可以在发酵过程中重新平衡代谢通量。然而,在大多数情况下,这些独立于途径的策略仅在一个细胞中具有单个 QS 电路功能的能力。此外,当前的动态调控主要提供代谢通量的局部控制。在这里,借助工程合成正交的与群体感应相关的电路和全局 mRNA 衰减,我们报告了一种独立于途径的动态资源分配策略,该策略允许我们独立控制两种不同的表型状态,从而将细胞资源全局重新分配到合成电路上。该策略可以独立于途径并全局地自我调节两种所需的细胞表型,包括生长表型和生产表型,可以完全消除对整个发酵过程进行人工监督的需要。