Suppr超能文献

基于工程群体感应的遗传回路增强了低 pH 下工业大肠杆菌的生长和生产稳定性。

Engineering quorum sensing-based genetic circuits enhances growth and productivity robustness of industrial E. coli at low pH.

机构信息

School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.

School of Biomedicine, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.

出版信息

Microb Cell Fact. 2024 Sep 28;23(1):256. doi: 10.1186/s12934-024-02524-9.

Abstract

BACKGROUND

Microbial organisms hold significant potential for converting renewable substrates into valuable chemicals. Low pH fermentation in industrial settings offers key advantages, including reduced neutralizer usage and decreased wastewater generation, particularly in the production of amino acids and organic acids. Engineering acid-tolerant strains represents a viable strategy to enhance productivity in acidic environments. Synthetic biology provides dynamic regulatory tools, such as gene circuits, facilitating precise expression of acid resistance (AR) modules in a just-in-time and just-enough manner.

RESULTS

In this study, we aimed to enhance the robustness and productivity of Escherichia coli, a workhorse for amino acid and organic acid production, in industrial fermentation under mild acidic conditions. We employed an Esa-type quorum sensing circuit to dynamically regulate the expression of an AR module (DsrA-Hfq) in a just-in-time and just-enough manner. Through careful engineering of the critical promoter P and stepwise evaluation, we developed an optimal Esa-P(L) circuit that conferred upon an industrial E. coli strain SCEcL3 comparable lysine productivity and enhanced yield at pH 5.5 compared to the parent strain at pH 6.8.

CONCLUSIONS

This study exemplifies the practical application of gene circuits in industrial environments, which present challenges far beyond those of well-controlled laboratory conditions.

摘要

背景

微生物在将可再生基质转化为有价值的化学物质方面具有巨大潜力。在工业环境中进行低 pH 发酵具有关键优势,包括减少中和剂的使用和减少废水的产生,特别是在氨基酸和有机酸的生产中。工程耐酸菌株是提高酸性环境下生产力的可行策略。合成生物学提供了动态调控工具,如基因回路,以实现 AR 模块的精确表达,实现适时适量的表达。

结果

在这项研究中,我们旨在提高大肠杆菌的鲁棒性和生产力,大肠杆菌是氨基酸和有机酸生产的主力,在工业发酵中在温和的酸性条件下进行。我们采用了一种 Esa 型群体感应电路,以适时适量的方式动态调节 AR 模块(DsrA-Hfq)的表达。通过对关键启动子 P 的精心工程设计和逐步评估,我们开发了一种最优的 Esa-P(L) 电路,赋予工业大肠杆菌菌株 SCEcL3 与亲本菌株在 pH6.8 相比,在 pH5.5 时具有可比的赖氨酸生产力和增强的产率。

结论

本研究例证了基因回路在工业环境中的实际应用,工业环境带来的挑战远远超出了实验室可控条件下的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe05/11438209/a4690d6984ad/12934_2024_2524_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验