Department of Neurology, College of Medicine, Myoungji Hospital, Hanyang University, Goyang, Republic of Korea.
Department of Neurology, Sungkyunkwan University of School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
Sci Rep. 2020 Nov 2;10(1):18806. doi: 10.1038/s41598-020-75664-8.
Amyloid-β(Aβ) PET positivity in patients with suspected cerebral amyloid angiopathy (CAA) MRI markers is predictive of a worse cognitive trajectory, and it provides insights into the underlying vascular pathology (CAA vs. hypertensive angiopathy) to facilitate prognostic prediction and appropriate treatment decisions. In this study, we applied two interpretable machine learning algorithms, gradient boosting machine (GBM) and random forest (RF), to predict Aβ PET positivity in patients with CAA MRI markers. In the GBM algorithm, the number of lobar cerebral microbleeds (CMBs), deep CMBs, lacunes, CMBs in dentate nuclei, and age were ranked as the most influential to predict Aβ positivity. In the RF algorithm, the absence of diabetes was additionally chosen. Cut-off values of the above variables predictive of Aβ positivity were as follows: (1) the number of lobar CMBs > 16.4(GBM)/14.3(RF), (2) no deep CMBs(GBM/RF), (3) the number of lacunes > 7.4(GBM/RF), (4) age > 74.3(GBM)/64(RF), (5) no CMBs in dentate nucleus(GBM/RF). The classification performances based on the area under the receiver operating characteristic curve were 0.83 in GBM and 0.80 in RF. Our study demonstrates the utility of interpretable machine learning in the clinical setting by quantifying the relative importance and cutoff values of predictive variables for Aβ positivity in patients with suspected CAA markers.
淀粉样蛋白-β(Aβ) PET 阳性在疑似脑淀粉样血管病 (CAA) MRI 标志物的患者中预测认知轨迹更差,并且深入了解潜在的血管病理学(CAA 与高血压性血管病)有助于预后预测和适当的治疗决策。在这项研究中,我们应用了两种可解释的机器学习算法,梯度提升机 (GBM) 和随机森林 (RF),来预测 CAA MRI 标志物患者的 Aβ PET 阳性。在 GBM 算法中,脑叶微出血 (CMB)、深部 CMB、腔隙、齿状核 CMB 和年龄的数量被认为是预测 Aβ 阳性的最有影响力的因素。在 RF 算法中,还选择了没有糖尿病。预测 Aβ 阳性的上述变量的截断值如下:(1) 脑叶 CMB 数量 > 16.4(GBM)/14.3(RF),(2) 无深部 CMB(GBM/RF),(3) 腔隙数量 > 7.4(GBM/RF),(4) 年龄 > 74.3(GBM)/64(RF),(5) 齿状核无 CMB(GBM/RF)。基于接收者操作特征曲线下面积的分类性能在 GBM 中为 0.83,在 RF 中为 0.80。我们的研究通过量化预测变量对疑似 CAA 标志物患者 Aβ 阳性的相对重要性和截断值,展示了可解释机器学习在临床环境中的实用性。