Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305.
Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2403136121. doi: 10.1073/pnas.2403136121. Epub 2024 Jun 26.
The spatial distribution of proteins and their arrangement within the cellular ultrastructure regulates the opening of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in response to glutamate release at the synapse. Fluorescence microscopy imaging revealed that the postsynaptic density (PSD) and scaffolding proteins in the presynaptic active zone (AZ) align across the synapse to form a trans-synaptic "nanocolumn," but the relation to synaptic vesicle release sites is uncertain. Here, we employ focused-ion beam (FIB) milling and cryoelectron tomography to image synapses under near-native conditions. Improved image contrast, enabled by FIB milling, allows simultaneous visualization of supramolecular nanoclusters within the AZ and PSD and synaptic vesicles. Surprisingly, membrane-proximal synaptic vesicles, which fuse to release glutamate, are not preferentially aligned with AZ or PSD nanoclusters. These synaptic vesicles are linked to the membrane by peripheral protein densities, often consistent in size and shape with Munc13, as well as globular densities bridging the synaptic vesicle and plasma membrane, consistent with prefusion complexes of SNAREs, synaptotagmins, and complexin. Monte Carlo simulations of synaptic transmission events using biorealistic models guided by our tomograms predict that clustering AMPARs within PSD nanoclusters increases the variability of the postsynaptic response but not its average amplitude. Together, our data support a model in which synaptic strength is tuned at the level of single vesicles by the spatial relationship between scaffolding nanoclusters and single synaptic vesicle fusion sites.
蛋白质在细胞超微结构中的空间分布及其排列方式调节了α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体对突触间隙谷氨酸释放的反应。荧光显微镜成像显示,突触后密度(PSD)和突触前活性区(AZ)中的支架蛋白在突触间排列整齐,形成跨突触“纳米柱”,但与突触囊泡释放位点的关系尚不确定。在这里,我们采用聚焦离子束(FIB)铣削和冷冻电子断层扫描在近天然条件下对突触进行成像。FIB 铣削提高了图像对比度,使我们能够同时观察 AZ 和 PSD 以及突触囊泡中的超分子纳米簇。令人惊讶的是,与 AZ 或 PSD 纳米簇优先对齐的是靠近膜的突触囊泡,这些突触囊泡通过周围蛋白密度与膜相连,这些蛋白密度的大小和形状通常与 Munc13 一致,还有一些球形密度桥接突触囊泡和质膜,与 SNARE、突触结合蛋白和复合蛋白的融合前复合物一致。使用我们的断层扫描图指导的生物现实模型对突触传递事件进行的蒙特卡罗模拟预测,在 PSD 纳米簇内聚集 AMPAR 会增加突触后反应的可变性,但不会增加其平均幅度。总的来说,我们的数据支持这样一种模型,即通过支架纳米簇和单个突触囊泡融合位点之间的空间关系,在单个囊泡水平上调节突触强度。