McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.
J Comp Neurol. 2021 Jun;529(8):1954-1987. doi: 10.1002/cne.25066. Epub 2020 Nov 10.
Structure-function analyses of the mammalian brain have historically relied on anatomically-based approaches. In these investigations, physical, chemical, or electrolytic lesions of anatomical structures are applied, and the resulting behavioral or physiological responses assayed. An alternative approach is to focus on the expression pattern of a molecule whose function has been characterized and then use genetic intersectional methods to optogenetically or chemogenetically manipulate distinct circuits. We previously identified WIDE AWAKE (WAKE) in Drosophila, a clock output molecule that mediates the temporal regulation of sleep onset and sleep maintenance. More recently, we have studied the mouse homolog, mWAKE/ANKFN1, and our data suggest that its basic role in the circadian regulation of arousal is conserved. Here, we perform a systematic analysis of the expression pattern of mWake mRNA, protein, and cells throughout the adult mouse brain. We find that mWAKE labels neurons in a restricted, but distributed manner, in multiple regions of the hypothalamus (including the suprachiasmatic nucleus, dorsomedial hypothalamus, and tuberomammillary nucleus region), the limbic system, sensory processing nuclei, and additional specific brainstem, subcortical, and cortical areas. Interestingly, mWAKE is also observed in non-neuronal ependymal cells. In addition, to describe the molecular identities and clustering of mWake cells, we provide detailed analyses of single cell RNA sequencing data from the hypothalamus, a region with particularly significant mWAKE expression. These findings lay the groundwork for future studies into the potential role of mWAKE cells in the rhythmic control of diverse behaviors and physiological processes.
哺乳动物大脑的结构-功能分析历来依赖于基于解剖学的方法。在这些研究中,对解剖结构进行物理、化学或电解损伤,并检测由此产生的行为或生理反应。另一种方法是关注已经确定功能的分子的表达模式,然后使用遗传交叉方法对不同的回路进行光遗传学或化学遗传学操作。我们之前在果蝇中鉴定了 WIDE AWAKE(WAKE),这是一种调节睡眠起始和维持的生物钟输出分子。最近,我们研究了小鼠同源物 mWAKE/ANKFN1,我们的数据表明其在昼夜节律觉醒调节中的基本作用是保守的。在这里,我们对成年小鼠大脑中 mWake mRNA、蛋白质和细胞的表达模式进行了系统分析。我们发现 mWAKE 以受限但分布的方式标记下丘脑(包括视交叉上核、下丘脑背内侧核和乳头体核区域)、边缘系统、感觉处理核以及其他特定的脑干、皮质下和皮质区域中的神经元。有趣的是,mWAKE 也存在于非神经元室管膜细胞中。此外,为了描述 mWake 细胞的分子身份和聚类,我们提供了下丘脑单细胞 RNA 测序数据的详细分析,下丘脑是 mWAKE 表达特别显著的区域。这些发现为未来研究 mWAKE 细胞在不同行为和生理过程的节律控制中的潜在作用奠定了基础。