Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
Instituto de Investigación Tecnológica (IIT), Universidad Pontificia Comillas, Madrid, E28015, Spain.
PLoS Comput Biol. 2020 Nov 3;16(11):e1008248. doi: 10.1371/journal.pcbi.1008248. eCollection 2020 Nov.
Successful mathematical modeling of biological processes relies on the expertise of the modeler to capture the essential mechanisms in the process at hand and on the ability to extract useful information from empirical data. A model is said to be structurally unidentifiable, if different quantitative sets of parameters provide the same observable outcome. This is typical (but not exclusive) of partially observed problems in which only a few variables can be experimentally measured. Most of the available methods to test the structural identifiability of a model are either too complex mathematically for the general practitioner to be applied, or require involved calculations or numerical computation for complex non-linear models. In this work, we present a new analytical method to test structural identifiability of models based on ordinary differential equations, based on the invariance of the equations under the scaling transformation of its parameters. The method is based on rigorous mathematical results but it is easy and quick to apply, even to test the identifiability of sophisticated highly non-linear models. We illustrate our method by example and compare its performance with other existing methods in the literature.
成功的生物过程数学建模依赖于建模者的专业知识,以捕捉当前过程中的基本机制,并能够从经验数据中提取有用信息。如果不同的定量参数集提供相同的可观察结果,则称模型在结构上是不可识别的。这在部分观测问题中很常见(但并非排他),其中只有少数变量可以通过实验测量。大多数用于测试模型结构可识别性的可用方法要么在数学上过于复杂,不适合一般从业者应用,要么需要复杂的非线性模型进行涉及计算或数值计算。在这项工作中,我们提出了一种基于常微分方程的新的分析方法来测试基于参数标度变换下方程不变性的模型的结构可识别性。该方法基于严格的数学结果,但易于应用,即使对于复杂的高度非线性模型的可识别性测试也是如此。我们通过示例来说明我们的方法,并将其性能与文献中的其他现有方法进行比较。