Suppr超能文献

从生物数据中提取可识别和可解释的动态模型。

Distilling identifiable and interpretable dynamic models from biological data.

机构信息

Computational Biology Lab, MBG-CSIC (Spanish National Research Council), Pontevedra, Galicia, Spain.

CITMAga, Santiago de Compostela, Galicia, Spain.

出版信息

PLoS Comput Biol. 2023 Oct 18;19(10):e1011014. doi: 10.1371/journal.pcbi.1011014. eCollection 2023 Oct.

Abstract

Mechanistic dynamical models allow us to study the behavior of complex biological systems. They can provide an objective and quantitative understanding that would be difficult to achieve through other means. However, the systematic development of these models is a non-trivial exercise and an open problem in computational biology. Currently, many research efforts are focused on model discovery, i.e. automating the development of interpretable models from data. One of the main frameworks is sparse regression, where the sparse identification of nonlinear dynamics (SINDy) algorithm and its variants have enjoyed great success. SINDy-PI is an extension which allows the discovery of rational nonlinear terms, thus enabling the identification of kinetic functions common in biochemical networks, such as Michaelis-Menten. SINDy-PI also pays special attention to the recovery of parsimonious models (Occam's razor). Here we focus on biological models composed of sets of deterministic nonlinear ordinary differential equations. We present a methodology that, combined with SINDy-PI, allows the automatic discovery of structurally identifiable and observable models which are also mechanistically interpretable. The lack of structural identifiability and observability makes it impossible to uniquely infer parameter and state variables, which can compromise the usefulness of a model by distorting its mechanistic significance and hampering its ability to produce biological insights. We illustrate the performance of our method with six case studies. We find that, despite enforcing sparsity, SINDy-PI sometimes yields models that are unidentifiable. In these cases we show how our method transforms their equations in order to obtain a structurally identifiable and observable model which is also interpretable.

摘要

机理动态模型使我们能够研究复杂生物系统的行为。它们可以提供一种客观的、定量的理解,而这是通过其他手段难以实现的。然而,这些模型的系统开发是一项非平凡的工作,也是计算生物学中的一个开放性问题。目前,许多研究工作都集中在模型发现上,即从数据中自动开发可解释的模型。其中一个主要的框架是稀疏回归,其中稀疏非线性动力学识别(SINDy)算法及其变体取得了巨大的成功。SINDy-PI 是一种扩展,它允许发现合理的非线性项,从而能够识别生物化学网络中常见的动力学函数,如米氏-门坦。SINDy-PI 还特别关注简约模型的恢复(奥卡姆剃刀)。在这里,我们专注于由一组确定性非线性常微分方程组成的生物模型。我们提出了一种方法,该方法与 SINDy-PI 相结合,允许自动发现具有结构可识别性和可观性的模型,同时也具有机械可解释性。缺乏结构可识别性和可观性使得无法唯一推断参数和状态变量,这可能会通过扭曲模型的机械意义和阻碍其产生生物学见解的能力来影响模型的有用性。我们用六个案例研究来说明我们方法的性能。我们发现,尽管 SINDy-PI 强制执行稀疏性,但有时会产生不可识别的模型。在这些情况下,我们展示了我们的方法如何将它们的方程转换为一个结构可识别和可观的模型,同时也是可解释的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/10615316/0690269b5f72/pcbi.1011014.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验