1 Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany.
2 Center for Biosystems Analysis (ZBSA), University of Freiburg, Freiburg im Breisgau, Germany.
Stat Methods Med Res. 2018 Jul;27(7):1979-1998. doi: 10.1177/0962280217746444. Epub 2018 Mar 7.
Ordinary differential equation models are frequently applied to describe the temporal evolution of epidemics. However, ordinary differential equation models are also utilized in other scientific fields. We summarize and transfer state-of-the art approaches from other fields like Systems Biology to infectious disease models. For this purpose, we use a simple SIR model with data from an influenza outbreak at an English boarding school in 1978 and a more complex model of a vector-borne disease with data from the Zika virus outbreak in Colombia in 2015-2016. Besides parameter estimation using a deterministic multistart optimization approach, a multitude of analyses based on the profile likelihood are presented comprising identifiability analysis and model reduction. The analyses were performed using the freely available modeling framework Data2Dynamics (data2dynamics.org) which has been awarded as best performing within the DREAM6 parameter estimation challenge and in the DREAM7 network reconstruction challenge.
常微分方程模型常用于描述传染病的时间演变。然而,常微分方程模型也应用于其他科学领域。我们总结并将系统生物学等其他领域的最新方法应用于传染病模型。为此,我们使用了一个简单的 SIR 模型,该模型的数据来自 1978 年英国一所寄宿学校的流感爆发,以及一个更复杂的基于 2015-2016 年哥伦比亚寨卡病毒爆发的虫媒疾病模型。除了使用确定性多启动优化方法进行参数估计外,还提出了基于似然函数的多种分析方法,包括可识别性分析和模型简化。这些分析是使用免费的建模框架 Data2Dynamics(data2dynamics.org)进行的,该框架在 DREAM6 参数估计挑战和 DREAM7 网络重建挑战中均被评为表现最佳。