Suppr超能文献

一种简单有效的可识别性测试方法。

An easy and efficient approach for testing identifiability.

机构信息

Center for Systems Biology (ZBSA), Habsburger Str. 49, University of Freiburg, 79104 Freiburg, Germany.

Center for Data Analysis and Modelling (FDM), Eckerstr. 1, University of Freiburg, 79104 Freiburg, Germany.

出版信息

Bioinformatics. 2018 Jun 1;34(11):1913-1921. doi: 10.1093/bioinformatics/bty035.

Abstract

MOTIVATION

The feasibility of uniquely estimating parameters of dynamical systems from observations is a widely discussed aspect of mathematical modelling. Several approaches have been published for analyzing this so-called identifiability of model parameters. However, they are typically computationally demanding, difficult to perform and/or not applicable in many application settings.

RESULTS

Here, an approach is presented which enables quickly testing of parameter identifiability. Numerical optimization with a penalty in radial direction enforcing displacement of the parameters is used to check whether estimated parameters are unique, or whether the parameters can be altered without loss of agreement with the data indicating non-identifiability. This Identifiability-Test by Radial Penalization (ITRP) can be employed for every model where optimization-based parameter estimation like least-squares or maximum likelihood is feasible and is therefore applicable for all typical systems biology models. The approach is illustrated and tested using 11 ordinary differential equation (ODE) models.

AVAILABILITY AND IMPLEMENTATION

The presented approach can be implemented without great efforts in any modelling framework. It is available within the free Matlab-based modelling toolbox Data2Dynamics. Source code is available at https://github.com/Data2Dynamics.

CONTACT

ckreutz@fdm.uni-freiburg.de.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

从观测结果中唯一估计动态系统参数的可行性是数学建模中广泛讨论的一个方面。已经发表了几种方法来分析这种所谓的模型参数可识别性。然而,它们通常计算量大,难以执行,并且/或者在许多应用场景中不适用。

结果

本文提出了一种能够快速测试参数可识别性的方法。使用带有惩罚项的径向方向的数值优化来强制参数的位移,以检查估计的参数是否是唯一的,或者参数是否可以在不失去与数据一致性的情况下进行更改,这表明不可识别性。这种通过径向惩罚的可识别性测试(ITRP)可以应用于每一种模型,其中基于优化的参数估计,如最小二乘法或最大似然法是可行的,因此适用于所有典型的系统生物学模型。该方法使用 11 个常微分方程(ODE)模型进行了说明和测试。

可用性和实现

所提出的方法可以在任何建模框架中毫不费力地实现。它可在免费的基于 Matlab 的建模工具 Data2Dynamics 中使用。源代码可在 https://github.com/Data2Dynamics 上获得。

联系方式

ckreutz@fdm.uni-freiburg.de

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验