Suppr超能文献

用结核分枝杆菌对小鼠进行超低剂量气溶胶感染更能模拟人类结核病。

Ultra-low Dose Aerosol Infection of Mice with Mycobacterium tuberculosis More Closely Models Human Tuberculosis.

机构信息

Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA.

Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98109, USA.

出版信息

Cell Host Microbe. 2021 Jan 13;29(1):68-82.e5. doi: 10.1016/j.chom.2020.10.003. Epub 2020 Nov 2.

Abstract

Tuberculosis (TB) is a heterogeneous disease manifesting in a subset of individuals infected with aerosolized Mycobacterium tuberculosis (Mtb). Unlike human TB, murine infection results in uniformly high lung bacterial burdens and poorly organized granulomas. To develop a TB model that more closely resembles human disease, we infected mice with an ultra-low dose (ULD) of between 1-3 founding bacteria, reflecting a physiologic inoculum. ULD-infected mice exhibited highly heterogeneous bacterial burdens, well-circumscribed granulomas that shared features with human granulomas, and prolonged Mtb containment with unilateral pulmonary infection in some mice. We identified blood RNA signatures in mice infected with an ULD or a conventional Mtb dose (50-100 CFU) that correlated with lung bacterial burdens and predicted Mtb infection outcomes across species, including risk of progression to active TB in humans. Overall, these findings highlight the potential of the murine TB model and show that ULD infection recapitulates key features of human TB.

摘要

结核病(TB)是一种异质性疾病,仅在感染分枝杆菌(Mtb)气溶胶的个体亚群中表现出来。与人类结核病不同,鼠类感染导致肺部细菌负荷均匀升高,且肉芽肿组织发育不良。为了开发更接近人类疾病的结核病模型,我们用超低剂量(ULD)(1-3 个创始细菌)感染小鼠,反映生理接种量。ULD 感染的小鼠表现出高度异质的细菌负荷,边界清楚的肉芽肿与人类肉芽肿具有相似特征,并且在一些小鼠中单侧肺部感染时能够长期控制 Mtb。我们在感染 ULD 或常规 Mtb 剂量(50-100 CFU)的小鼠中鉴定出血液 RNA 特征,这些特征与肺部细菌负荷相关,并可预测跨物种的 Mtb 感染结果,包括人类进展为活动性结核病的风险。总体而言,这些发现突出了鼠类结核病模型的潜力,并表明 ULD 感染重现了人类结核病的关键特征。

相似文献

1
Ultra-low Dose Aerosol Infection of Mice with Mycobacterium tuberculosis More Closely Models Human Tuberculosis.
Cell Host Microbe. 2021 Jan 13;29(1):68-82.e5. doi: 10.1016/j.chom.2020.10.003. Epub 2020 Nov 2.
3
Host and pathogen genetic diversity shape vaccine-mediated protection to .
Front Immunol. 2024 Jun 28;15:1427846. doi: 10.3389/fimmu.2024.1427846. eCollection 2024.
4
Assessing vaccine-mediated protection in an ultra-low dose Mycobacterium tuberculosis murine model.
PLoS Pathog. 2023 Nov 27;19(11):e1011825. doi: 10.1371/journal.ppat.1011825. eCollection 2023 Nov.
5
Heterogeneity in immune cell composition is associated with replication at the granuloma level.
Front Immunol. 2024 Aug 26;15:1427472. doi: 10.3389/fimmu.2024.1427472. eCollection 2024.
6
TLR2 is non-redundant in the population and subpopulation responses to in macrophages and .
mSystems. 2023 Aug 31;8(4):e0005223. doi: 10.1128/msystems.00052-23. Epub 2023 Jul 13.
8
Zinc-limited stimulate distinct responses in macrophages compared with standard zinc-replete bacteria.
Infect Immun. 2025 Mar 11;93(3):e0057824. doi: 10.1128/iai.00578-24. Epub 2025 Feb 4.
9
Xpert MTB/RIF Ultra assay for tuberculosis disease and rifampicin resistance in children.
Cochrane Database Syst Rev. 2022 Sep 6;9(9):CD013359. doi: 10.1002/14651858.CD013359.pub3.

引用本文的文献

2
Early and opposing neutrophil and CD4 T cell responses shape pulmonary tuberculosis pathology.
J Exp Med. 2025 Oct 6;222(10). doi: 10.1084/jem.20250161. Epub 2025 Jul 30.
3
The Impact of Animal Models and Strain Standardization on the Evaluation of Tuberculosis Vaccine Efficacy.
Vaccines (Basel). 2025 Jun 21;13(7):669. doi: 10.3390/vaccines13070669.
4
Experimental dissection of tuberculosis protective immunity: a human perspective.
Front Cell Infect Microbiol. 2025 Jun 30;15:1595076. doi: 10.3389/fcimb.2025.1595076. eCollection 2025.
5
c-Myc inhibits macrophage antimycobacterial response in infection.
bioRxiv. 2025 Jun 6:2025.01.09.632095. doi: 10.1101/2025.01.09.632095.
7
Distribution characteristics of aerosol microorganisms in bronchoscopy room and the risk assessment of nosocomial infection.
Front Public Health. 2025 Apr 28;13:1556364. doi: 10.3389/fpubh.2025.1556364. eCollection 2025.
8
Microenvironments of tuberculous granuloma: advances and opportunities for therapy.
Front Immunol. 2025 Mar 24;16:1575133. doi: 10.3389/fimmu.2025.1575133. eCollection 2025.

本文引用的文献

1
Transcriptional regulator-induced phenotype screen reveals drug potentiators in Mycobacterium tuberculosis.
Nat Microbiol. 2021 Jan;6(1):44-50. doi: 10.1038/s41564-020-00810-x. Epub 2020 Nov 16.
2
RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response.
Sci Rep. 2020 May 25;10(1):8629. doi: 10.1038/s41598-020-65043-8.
3
CytoMAP: A Spatial Analysis Toolbox Reveals Features of Myeloid Cell Organization in Lymphoid Tissues.
Cell Rep. 2020 Apr 21;31(3):107523. doi: 10.1016/j.celrep.2020.107523.
4
Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis.
Nat Immunol. 2020 Apr;21(4):464-476. doi: 10.1038/s41590-020-0610-z. Epub 2020 Mar 16.
5
Immune correlates of tuberculosis disease and risk translate across species.
Sci Transl Med. 2020 Jan 29;12(528). doi: 10.1126/scitranslmed.aay0233.
6
Prevention of tuberculosis in macaques after intravenous BCG immunization.
Nature. 2020 Jan;577(7788):95-102. doi: 10.1038/s41586-019-1817-8. Epub 2020 Jan 1.
7
Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response in vivo.
Sci Immunol. 2019 Jul 26;4(37). doi: 10.1126/sciimmunol.aaw6693.
8
Prevention of tuberculosis infection and disease by local BCG in repeatedly exposed rhesus macaques.
Nat Med. 2019 Feb;25(2):255-262. doi: 10.1038/s41591-018-0319-9. Epub 2019 Jan 21.
9
Cough-aerosol cultures of Mycobacterium tuberculosis in the prediction of outcomes after exposure. A household contact study in Brazil.
PLoS One. 2018 Oct 29;13(10):e0206384. doi: 10.1371/journal.pone.0206384. eCollection 2018.
10
Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination.
Cell Host Microbe. 2018 Sep 12;24(3):439-446.e4. doi: 10.1016/j.chom.2018.08.001. Epub 2018 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验